题目内容

已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2(n=1,2,…),a1=1.
(1)设bn=an+1-2an(n=1,2,…),求证:数列{bn}是等比数列;
(2)设cn=(n=1,2,…),求证:数列{cn}是等差数列;
(3)求数列{an}的通项公式及前n项和公式.
(1)证明略(2)证明略(3){an}的前n项和公式为Sn=(3n-4)·2n-1+2
(1)证明 ∵Sn+1=4an+2,
∴Sn+2=4an+1+2,两式相减,得
Sn+2-Sn+1=4an+1-4an(n=1,2,…),
即an+2=4an+1-4an,
变形得an+2-2an+1=2(an+1-2an)
∵bn=an+1-2an(n=1,2,…),∴bn+1=2bn.
由此可知,数列{bn}是公比为2的等比数列.
(2)证明 由S2=a1+a2=4a1+2,a1=1.
得a2=5,b1=a2-2a1=3.故bn=3·2n-1.
∵cn=(n=1,2,…),
∴cn+1-cn=-==.
将bn=3·2n-1代入得
cn+1-cn=(n=1,2,…),
由此可知,数列{cn}是公差为的等差数列,
它的首项c1==,故cn=n-(n=1,2,…).
(3)解 ∵cn=n-=(3n-1).
∴an=2n·cn=(3n-1)·2n-2 (n=1,2,…)
当n≥2时,Sn=4an-1+2=(3n-4)·2n-1+2.
由于S1=a1=1也适合于此公式,
所以{an}的前n项和公式为Sn=(3n-4)·2n-1+2.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网