题目内容

f(n)=1+
1
2
+
1
3
+…+
1
n
,是否存在g(n),使等式f(1)+f(2)+…+f(n-1)=g(n)[f(n)-1]对n≥2的一切自然数都成立,并证明你的结论.
由于f(1)=1,f(2)=1+
1
2
,f(3)=1+
1
2
+
1
3
,…,f(n)=1+
1
2
+
1
3
+…+
1
n

所以f(1)+f(2)+f(3)+…+f(n-1)
=(n-1)×1+(n-2)×
1
2
+(n-3)×
1
3
+…+[n-(n-2)]×
1
n-2
+[n-(n-1)]×
1
n-1

=n[1+
1
2
+
1
3
+…+
1
n-1
]-(n-1)×1=n(
1
2
+
1
3
+
1
4
+…+
1
n
),
而g(n)[f(n)-1]=g(n)[(1+
1
2
+
1
3
+…+
1
n
)-1]=g(n)(
1
2
+
1
3
+
1
4
+…+
1
n
),
故由等式f(1)+f(2)+…+f(n-1)=g(n)[f(n)-1],
可得n(
1
2
+
1
3
+
1
4
+…+
1
n
)=g(n)(
1
2
+
1
3
+
1
4
+…+
1
n
),
解得g(n)=n,
故存在g(n)满足条件,且通项公式为 g(n)=n.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网