题目内容
【题目】某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,则每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.
(Ⅰ)若商店一天购进该商品10件,求当天的利润y(单位:元)关于当天需求量n(单位:件,n∈N)的函数解析式;
(Ⅱ)商店记录了50天该商品的日需求量(单位:件),整理得下表:
日需求量n | 8 | 9 | 10 | 11 | 12 |
频数 | 10 | 10 | 15 | 10 | 5 |
①假设该店在这50天内每天购进10件该商品,求这50天的日利润(单位:元)的平均数;
②若该店一天购进10件该商品,记“当天的利润在区间”为事件A,求P(A)的估计值.
【答案】(1) ;(2) 0.7
【解析】
试题分析:(Ⅰ)根据题意分段求解得出当时,,当时,,(Ⅱ)①50天内有9天获得的利润380元,有11天获得的利润为440元,有15天获得利润为500元,有10天获得的利润为530元,有5天获得的利润为560,求其平均数即可.②当天的利润在区间[400,500]有11+15+10天,即可求解概率.
试题解析: 解:(Ⅰ)当日需求量时,利润为;
当需求量时,利润
所以利润与日需求量的函数关系式为:
(Ⅱ)50天内有10天获得的利润380元,有10天获得的利润为440元,有15天获得利润为500元,有10天获得的利润为530元,有5天获得的利润为560元
① .
② 事件A发生当且仅当日需求量n为9或10或11时.由所给数据知,n=9或10或11的频率为,
故P(A)的估计值为0.7
【题目】设f(x)= (m>0,n>0).
(1) 当m=n=1时,求证:f(x)不是奇函数;
(2) 设f(x)是奇函数,求m与n的值;
(3) 在(2)的条件下,求不等式f(f(x))+f <0的解集.
【题目】根据国家环保部新修订的《环境空气质量标准》规定:居民区的年平均浓度不得超过微克/立方米,的24小时平均浓度不得超过微克/立方米.某城市环保部门随机抽取了一居民区去年20天的24小时平均浓度的监测数据,数据统计如下:
组别 | 浓度 (微克/立方米) | 频数(天) | 频率 |
第一组 | 3 | 0.15 | |
第二组 | 12 | 0.6 | |
第三组 | 3 | 0.15 | |
第四组 | 2 | 0.1 |
(1)从样本中的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天
的24小时平均浓度超过75微克/立方米的概率;
(2)求样本平均数,并根据样本估计总体的思想,从的年平均浓度考虑,判断该居民区的环境是
否需要改进?说明理由.