题目内容
【题目】已知函数f(x)=()x.
(Ⅰ)当x∈[﹣1,1]时,求函数y=[f(x)]2﹣2af(x)+3的最小值g(a);
(Ⅱ)在(Ⅰ)的条件下,是否存在实数m>n>3,使得g(x)的定义域为[n,m],值域为[n2,m2]?若存在,求出m、n的值;若不存在,请说明理由.
【答案】(Ⅰ)g(a)=(Ⅱ)见解析.
【解析】试题分析:(Ⅰ)在的情况下,求出的值域,对所给函数进行配方化简,可利用一元二次函数的性质对进行分类讨论,可得函数的最小值;(Ⅱ)假设存在,利用(Ⅰ)中分段函数在的单调性,结合区间与值域,可得关于的等式,解得存在情况.
试题解析:(Ⅰ)∵x∈[﹣1,1],∴f(x)=()x∈[,3],
y=[f(x)]2﹣2af(x)+3=[()x]2﹣2a()x+3
=[()x﹣a]2+3﹣a2. .
由一元二次函数的性质分三种情况:
若a<,则当时,ymin=g(a)=;
若≤a≤3,则当时,ymin=g(a)=3﹣a2;
若a>3,则当时,ymin=g(a)=12﹣6a.
∴g(a)=
(Ⅱ)假设存在满足题意的m、n,
∵m>n>3,且g(x)=12﹣6x在区间(3,+∞)内是减函数,
又g(x)的定义域为[n,m],值域为[n2,m2],
∴
两式相减,得6(m﹣n)=(m+n)(m﹣n),
∵m>n>3,∴m+n=6,但这与“m>n>3”矛盾,
∴满足题意的m、n不存在.
【题目】某校高二奥赛班N名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100~110的学生数有21人。
(Ⅰ)求总人数N和分数在110~115分的人数n;
(Ⅱ)现准备从分数在110~115分的n名学生(女生占)中任选2人,求其中恰好含有一名女生的概率;
(Ⅲ)为了分析某个学生的学习状态,对其下一阶段的学习提供指导性建议,对他前7次考试的数学成绩x(满分150分),物理成绩y进行分析,下面是该生7次考试的成绩。
数学 | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理 | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
已知该生的物理成绩y与数学成绩x是线性相关的,若该生的数学成绩达到130分,请你估计他的物理成绩大约是多少?
附:对于一组数据其回归线的斜率和截距的最小二乘估计分别为.
【题目】某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,则每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.
(Ⅰ)若商店一天购进该商品10件,求当天的利润y(单位:元)关于当天需求量n(单位:件,n∈N)的函数解析式;
(Ⅱ)商店记录了50天该商品的日需求量(单位:件),整理得下表:
日需求量n | 8 | 9 | 10 | 11 | 12 |
频数 | 10 | 10 | 15 | 10 | 5 |
①假设该店在这50天内每天购进10件该商品,求这50天的日利润(单位:元)的平均数;
②若该店一天购进10件该商品,记“当天的利润在区间”为事件A,求P(A)的估计值.