题目内容
【题目】已知数列的前n项和为Sn,点在直线上,数列为等差数列,且,前9项和为153.
(1)求数列、的通项公式;
(2)设,数列的前n项和为,求使不等式对一切的都成立的最大整数k.
【答案】(1)an=n+5, (2)18
【解析】试题分析:
(1)由通项公式与前n项和的关于可得an=n+5;求得数列的基本量可得;
(2)裂项求和可求得,求解关于n的不等式可知最大整数k是18.
试题解析:
(1)由已知有,即,
则当n≥2时, ,
两式相减得an=n+5,又a1=S1=6,也符合上式,所以an=n+5,
设{bn}的公差为d,前n项和为Rn,则由已知有,所以b5=17,
所以,所以bn=b3+3(n-3)=3n+2 ;
(2)由(1)得,
所以
由Tn单调递增得的最小值为,所以恒成立即,
所以k的最大整数值为18.
【题目】某工厂为了对新研发的产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组检测数据(…)如下表所示:
试销价格 (元) | 4 | 5 | 6 | 7 | 9 | |
产品销量 (件) | 84 | 83 | 80 | 75 | 68 |
已知变量具有线性负相关关系,且,,现有甲、乙、丙三位同学通过计算求得其回归直线方程分别为:甲,乙,丙,其中有且仅有一位同学的计算结果是正确的( ).
(1)试判断谁的计算结果正确?并求出的值;
(2)若由线性回归方程得到的估计数据与检测数据的误差不超过1,则该检测数据是“理想数据”,现从检测数据中随机抽取2个,为“理想数据”的个数,求随机变量的分布列和数学期望.
【题目】某校高二奥赛班N名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100~110的学生数有21人。
(Ⅰ)求总人数N和分数在110~115分的人数n;
(Ⅱ)现准备从分数在110~115分的n名学生(女生占)中任选2人,求其中恰好含有一名女生的概率;
(Ⅲ)为了分析某个学生的学习状态,对其下一阶段的学习提供指导性建议,对他前7次考试的数学成绩x(满分150分),物理成绩y进行分析,下面是该生7次考试的成绩。
数学 | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理 | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
已知该生的物理成绩y与数学成绩x是线性相关的,若该生的数学成绩达到130分,请你估计他的物理成绩大约是多少?
附:对于一组数据其回归线的斜率和截距的最小二乘估计分别为.
【题目】“奶茶妹妹”对某时间段的奶茶销售量及其价格进行调查,统计出售价元和销售量杯之间的一组数据如下表所示:
价格 | 5 | 5.5 | 6.5 | 7 |
销售量 | 12 | 10 | 6 | 4 |
通过分析,发现销售量对奶茶的价格具有线性相关关系.
(Ⅰ)求销售量对奶茶的价格的回归直线方程;
(Ⅱ)欲使销售量为杯,则价格应定为多少?
附:线性回归方程为,其中,
【题目】某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,则每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.
(Ⅰ)若商店一天购进该商品10件,求当天的利润y(单位:元)关于当天需求量n(单位:件,n∈N)的函数解析式;
(Ⅱ)商店记录了50天该商品的日需求量(单位:件),整理得下表:
日需求量n | 8 | 9 | 10 | 11 | 12 |
频数 | 10 | 10 | 15 | 10 | 5 |
①假设该店在这50天内每天购进10件该商品,求这50天的日利润(单位:元)的平均数;
②若该店一天购进10件该商品,记“当天的利润在区间”为事件A,求P(A)的估计值.