题目内容
【题目】根据国家环保部新修订的《环境空气质量标准》规定:居民区的年平均浓度不得超过微克/立方米,的24小时平均浓度不得超过微克/立方米.某城市环保部门随机抽取了一居民区去年20天的24小时平均浓度的监测数据,数据统计如下:
组别 | 浓度 (微克/立方米) | 频数(天) | 频率 |
第一组 | 3 | 0.15 | |
第二组 | 12 | 0.6 | |
第三组 | 3 | 0.15 | |
第四组 | 2 | 0.1 |
(1)从样本中的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天
的24小时平均浓度超过75微克/立方米的概率;
(2)求样本平均数,并根据样本估计总体的思想,从的年平均浓度考虑,判断该居民区的环境是
否需要改进?说明理由.
【答案】(1);(2)去年该居民区年平均浓度不符合环境空气质量标准,故该居民区的环境需要改进.
【解析】
试题分析:(1)利用列举法求古典概型的概率;(2)计算出去年该居民区年平均浓度,故该居民区的环境需要改进.
试题解析:(1)设的小时平均浓度在内的三天记为,,,的24小时平均浓度在内的两天记为,.
所以5天任取2天的情况有:,,,,,,,,,共10种.
其中符合条件的有:,,,,,共6种.
所以所求的概率.
(2)去年该居民区年平均浓度为:
(微克/立方米).
因为,所以去年该居民区年平均浓度不符合环境空气质量标准,故该居民区的环境需要改进.
【题目】某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,则每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.
(Ⅰ)若商店一天购进该商品10件,求当天的利润y(单位:元)关于当天需求量n(单位:件,n∈N)的函数解析式;
(Ⅱ)商店记录了50天该商品的日需求量(单位:件),整理得下表:
日需求量n | 8 | 9 | 10 | 11 | 12 |
频数 | 10 | 10 | 15 | 10 | 5 |
①假设该店在这50天内每天购进10件该商品,求这50天的日利润(单位:元)的平均数;
②若该店一天购进10件该商品,记“当天的利润在区间”为事件A,求P(A)的估计值.
【题目】已知三个班共有学生100人,为调查他们的体育锻炼情况,通过分层抽样获取了部分学生一周的锻炼时间,数据如下表(单位:小时).
班 | 6 | 7 | ||
班 | 6 | 7 | 8 | |
班 | 5 | 6 | 7 | 8 |
(1)试估计班学生人数;
(2)从班和班抽出来的学生中各选一名,记班选出的学生为甲,班选出的学生为乙,求甲的锻炼时间大于乙的锻炼时间的概率.