题目内容
已知椭圆的焦点在轴上,离心率为,对称轴为坐标轴,且经过点.
(1)求椭圆的方程;
(2)直线与椭圆相交于、两点, 为原点,在、上分别存在异于点的点、,使得在以为直径的圆外,求直线斜率的取值范围.
(1)求椭圆的方程;
(2)直线与椭圆相交于、两点, 为原点,在、上分别存在异于点的点、,使得在以为直径的圆外,求直线斜率的取值范围.
(1) (2)
试题分析:(1)利用待定系数法设椭圆方程为,然后利用题目条件建立方程,解方程即可;(2)联立直线与椭圆方程,得到关于x的一元二次方程,,然后利用韦达定理结合点在圆外为锐角,即,建立不等式求直线斜率的取值范围即可.
试题解析:(1)依题意,可设椭圆的方程为.
由
∵ 椭圆经过点,则,解得
∴ 椭圆的方程为
(2)联立方程组,消去整理得
∵ 直线与椭圆有两个交点,
∴ ,解得 ①
∵ 原点在以为直径的圆外,∴为锐角,即.
而、分别在、上且异于点,即
设两点坐标分别为,
则
解得 , ②
综合①②可知:
练习册系列答案
相关题目