题目内容
已知抛物线C:y2=2px(p>0)的焦点F和椭圆的右焦点重合,直线过点F交抛物线于A、B两点.
(1)求抛物线C的方程;
(2)若直线交y轴于点M,且,m、n是实数,对于直线,m+n是否为定值?
若是,求出m+n的值;否则,说明理由.
(1)求抛物线C的方程;
(2)若直线交y轴于点M,且,m、n是实数,对于直线,m+n是否为定值?
若是,求出m+n的值;否则,说明理由.
(1);(2)-1
试题分析:(1)因为椭圆的右焦点为,又因为抛物线C:y2=2px(p>0)的焦点F为.即可求出的值,从而得到抛物线的方程.
(2)假设直线方程以及.联立椭圆方程,消元得到一个关于x的一元二次方程,由韦达定理可得两个等式.根据由向量的相等关系,可得到关于m,n的等式,结合韦达定理的等式,再运算m+n即可得到结论.
试题解析:(1)∵椭圆的右焦点,
∴,得,
∴抛物线C的方程为.
(2)由已知得直线的斜率一定存在,所以设:,与y轴交于,
设直线交抛物线于,
由
∴,
又由
即m=,同理,∴
所以,对任意的直线,m+ n为定值-1
练习册系列答案
相关题目