题目内容
【题目】已知函数,正实数a,b,c是公差为正数的等差数列,且满足.若实数d是方程的一个解,那么下列三个判断:①d<a;②d<b;③d<c中有可能成立的个数为( )
A. 0 B. 1 C. 2 D. 3
【答案】D
【解析】
分情况讨论,若f(a),f(b)>0和f(a),f(b),f(c)<0两种情况,根据函数f(x)的单调性可推断a,b,c,d的大小.
f(x)在(0,+∞)上单调减,值域为R,正实数a,b,c是公差为正数的等差数列,所以a<b<c,f(a)f(b)f(c)<0,所以(1)若f(a),f(b)>0,f(c)<0.由f(d)=0知,a<b<d<c,③成立;(2)若f(a),f(b),f(c)<0.此时d<a<b<c,①②③成立.综上,可能成立的个数为3.
故选:D.
练习册系列答案
相关题目