题目内容
【题目】a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:
①当直线AB与a成60°角时,AB与b成30°角;
②当直线AB与a成60°角时,AB与b成60°角;
③直线AB与a所成角的最小值为45°;
④直线AB与a所成角的最小值为60°;
其中正确的是(填写所有正确结论的编号)
【答案】②③
【解析】解:由题意知,a、b、AC三条直线两两相互垂直,画出图形如图,
不妨设图中所示正方体边长为1,
故|AC|=1,|AB|= ,
斜边AB以直线AC为旋转轴,则A点保持不变,
B点的运动轨迹是以C为圆心,1为半径的圆,
以C坐标原点,以CD为x轴,CB为y轴,CA为z轴,建立空间直角坐标系,
则D(1,0,0),A(0,0,1),直线a的方向单位向量 =(0,1,0),| |=1,
直线b的方向单位向量 =(1,0,0),| |=1,
设B点在运动过程中的坐标中的坐标B′(cosθ,sinθ,0),
其中θ为B′C与CD的夹角,θ∈[0,2π),
∴AB′在运动过程中的向量, =(﹣cosθ,﹣sinθ,1),| |= ,
设 与 所成夹角为α∈[0, ],
则cosα= = |sinθ|∈[0, ],
∴α∈[ , ],∴③正确,④错误.
设 与 所成夹角为β∈[0, ],
cosβ= = = |cosθ|,
当 与 夹角为60°时,即α= ,
|sinθ|= = = ,
∵cos2θ+sin2θ=1,∴cosβ= |cosθ|= ,
∵β∈[0, ],∴β= ,此时 与 的夹角为60°,
∴②正确,①错误.
故答案为:②③.
由题意知,a、b、AC三条直线两两相互垂直,构建如图所示的边长为1的正方体,|AC|=1,|AB|= ,斜边AB以直线AC为旋转轴,则A点保持不变,B点的运动轨迹是以C为圆心,1为半径的圆,以C坐标原点,以CD为x轴,CB为y轴,CA为z轴,建立空间直角坐标系,利用向量法能求出结果.