题目内容
【题目】过抛物线上一点作直线交抛物线E于另一点N.
(1)若直线MN的斜率为1,求线段的长.
(2)不过点M的动直线l交抛物线E于A,B两点,且以AB为直径的圆经过点M,问动直线l是否恒过定点.如果有求定点坐标,如果没有请说明理由.
【答案】(1)(2)有,定点.
【解析】
(1)将点代入抛物线方程求出,可得抛物线方程,求出直线的方程,将直线与抛物线联立求出交点,从而利用两点间的距离公式即可求解.
(2)设出直线AB的方程:,将直线与抛物线联立消,利用,可得,设,利用韦达定理,结合,利用向量数量积的坐标运算整理可得,从而可得,代入直线方程即可求解.
(1)把代入中,得
直线的方程:,
即:与联立
得:,
∴,;∴
∴.
(2)设直线AB的方程为:与联立,
得:,
设,
,即
,
∵,∴
∴
整理得:
代入得:
即
∴(舍去),(符合)
∴直线
∴
即动直线AB经过定点.
练习册系列答案
相关题目