题目内容
【题目】设是各项均为正数的等差数列,,是和的等比中项,的前项和为,.
(1)求和的通项公式;
(2)设数列的通项公式.
(i)求数列的前项和;
(ii)求.
【答案】(1),;(2)(i);(ii)
【解析】
(1)因为,是和的等比中项,根据等比中项可求得,再根据等差数列的通项公式求出,利用与的关系,证出是以2为首项,2为公比的等比数列,再利用等比数列的通项公式求出的通项公式;
(2)根据(1)中和的通项公式,列出数列的通项公式,利用分组求和法,分成奇数组和偶数组,即可求出数列的前项和;
将分为奇数和偶数两种情况,当为奇数时,设,运用裂项相消法化简求出结果;当为偶数时,设,运用错位相减法求出结果;分别求解出后,相加求得的值即可.
(1)解:设等差数列的公差为,
因为,是和的等比中项,
所以,即,
解得,因为是各项均为正数的等差数列,
所以,
故,
因为,所以,
两式相减得:,
当时,,,
是以2为首项,2为公比的等比数列,
.
(2)(i)解:,
所以
.
(ii)解:当为奇数时,
设
,
当为偶数时,
设,
,
所以,
故,
所以.
练习册系列答案
相关题目