题目内容

【题目】有甲、乙两个班级进行数学考试,按照大于或等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的2×2列联表.已知从全部210人中随机抽取1人为优秀的概率为.

(1)请完成上面的2×2列联表,并判断若按99%的可靠性要求,能否认为“成绩与班级有关”;

(2)从全部210人中有放回地抽取3次,每次抽取1人,记被抽取的3人中的优秀人数为ξ,若每次抽取的结果是相互独立的,求ξ的分布列及数学期望E(ξ).

P(K2k0)

0.05

0.01

k0

3.841

6.635

附:

【答案】(1)见解析;(2)见解析.

【解析】试题分析:(1)优秀人数为 ,进而求得其它数据,从而求得 ,故可以判定有关;(2)易得 ,计算得分布列及方差.试题解析:

(1)

k≈12.2,所以按照99%的可靠性要求,能够判断成绩与班级有关.

(2)ξB,且P(ξk)Ck·3k(k0,1,2,3)ξ的分布列为

E(ξ).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网