题目内容

【题目】已知二面角α﹣l﹣β为60°,ABα,AB⊥l,A为垂足,CDβ,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为( )
A.
B.
C.
D.

【答案】B
【解析】解:如图,过A点做AE⊥l,使BE⊥β,垂足为E,过点A做AF∥CD,过点E做EF⊥AE,连接BF,

∵AE⊥l∴∠EAC=90°

∵CD∥AF又∠ACD=135°

∴∠FAC=45°∴∠EAF=45°

在Rt△BEA中,设AE=a,则AB=2a,BE= a,

在Rt△AEF中,则EF=a,AF= a,

在Rt△BEF中,则BF=2a,

∴异面直线AB与CD所成的角即是∠BAF,

∴cos∠BAF= = =

所以答案是:B.

【考点精析】通过灵活运用异面直线及其所成的角,掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网