题目内容
【题目】如图所示,ABCD-A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确是( )
A.A,M,O三点共线B.A,M,O,A1不共面
C.A,M,C,O不共面D.B,B1,O,M共面
【答案】A
【解析】
本题利用直接法进行判断,先观察图形判断A,M,O三点共线,为了要证明A,M,O三点共线,先将M看成是在平面ACC1A1与平面AB1D1的交线上,利用同样的方法证明点O、A也是在平面ACC1A1与平面AB1D1的交线上,从而证明三点共线.
连接A1C1,AC,则A1C1∥AC,
∴A1,C1,A,C四点共面,
∴A1C平面ACC1A1,
∵M∈A1C,∴M∈平面ACC1A1,又M∈平面AB1D1,
∴M在平面ACC1A1与平面AB1D1的交线上,
同理O在平面ACC1A1与平面AB1D1的交线上.
∴A,M,O三点共线.
故选:A.
练习册系列答案
相关题目