题目内容
【题目】设点,分别是椭园C:的左、右焦点,且椭圆C上的点到的距离的最小值为,点M,N是椭圆C上位于x轴上方的两点,且向量与向量平行.
求椭圆C的方程;
当时,求的面积;
当时,求直线的方程.
【答案】(1)(2)4(3).
【解析】
根据椭圆的简单性质可得,求解t,即可得到椭圆C的方程;
可设,根据向量的数量积求出点N的坐标,由三角形面积公式可得的面积;
向量与向量平行,不妨设,设,,根据坐标之间的关系,求得M的坐标,再根据向量的模,即可求出的值,根据斜率公式求出直线的斜率,根据直线平行和点斜式即可求出直线的方程.
点、分别是椭圆C:的左、右焦点,,,
椭圆C上的点到点的距离的最小值为,,
解得,椭圆的方程为;
由可得,,点N是椭圆C上位于x轴上方的点,
可设,
,,
,,
解得,,,
的面积;
向量与向量平行,,
,,即,
设,,
,,
,,
,
,,
,则,
,,,解得,或舍去.
,,,则,
,向量与向量平行,所在直线当斜率为,
直线的方程为,即为.
【题目】某商场营销人员进行某商品M市场营销调查发现,每回馈消费者一定的点数,该商品每天的销量就会发生一定的变化,经过试点统计得到以如表:
反馈点数t | 1 | 2 | 3 | 4 | 5 |
销量百件天 | 1 |
经分析发现,可用线性回归模型拟合当地该商品销量千件与返还点数t之间的相关关系请用最小二乘法求y关于t的线性回归方程,并预测若返回6个点时该商品每天销量;
若节日期间营销部对商品进行新一轮调整已知某地拟购买该商品的消费群体十分庞大,经营销调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:
返还点数预期值区间 百分比 | ||||||
频数 | 20 | 60 | 60 | 30 | 20 | 10 |
求这200位拟购买该商品的消费者对返点点数的心理预期值X的样本平均数及中位数的估计值同一区间的预期值可用该区间的中点值代替;估计值精确到;
将对返点点数的心理预期值在和的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取3名进行跟踪调查,设抽出的3人中“欲望膨胀型”消费者的人数为随机变量X,求X的分布列及数学期望.
参考公式及数据:,;.