题目内容
【题目】已知函数,曲线在点处的切线方程为.
(1)求函数的解析式,并证明:.
(2)已知,且函数与函数的图象交于,两点,且线段的中点为,证明:.
【答案】(1),证明见解析; (2)证明见解析.
【解析】
(1)利用切线方程可求得的解析式,令,利用导数可求得,从而证得结论;(2)通过分析法可知要证成立只需证;令,即证:;令,利用导数研究单调性,可知,得到成立;令,利用导数研究单调性,可知,得到成立,可知需证的不等式成立,则原不等式成立.
(1)由题意得:,即
又,即,则,解得:
则.
令,
令,解得:
则函数在上单调递减,在上单调递增
,则:
(2)要证成立,只需证:
即证,即:
只需证:
设,即证:
要证,只需证:
令,则
在上为增函数
,即成立;
要证,只需证明:
令,则
在上为减函数 ,即成立
,成立
成立
练习册系列答案
相关题目
【题目】某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,统计结果如下表所示,已知这100位顾客中一次购物量超过7件的顾客占.
一次购物量 | 1至3件 | 4至7件 | 8至11件 | 12至15件 | 16件及以上 |
顾客数(人) | 27 | 20 | 10 | ||
结算时间(/人) | 0.5 | 1 | 1.5 | 2 | 2.5 |
(1)确定,的值,并求顾客一次购物的结算时间的平均值;
(2)从收集的结算时间不超过的顾客中,按分层抽样的方法抽取5人,再从这5人中随机抽取2人,求至少有1人的结算时间为的概率.(注:将频率视为概率)