题目内容
【题目】在平面直角坐标系中,已知曲线(为参数),.以原点为极点,轴的非负半轴为极轴建立极坐标系.
(I)写出曲线与圆的极坐标方程;
(II)在极坐标系中,已知射线分别与曲线及圆相交于,当时,求的最大值.
【答案】(I),;(II).
【解析】
(I)将曲线的参数消去转化为普通方程,然后转化为极坐标方程.利用普通方程与极坐标方程的互化公式将圆的普通方程转化为直角坐标方程.(II)由于两个三角形的高相同,故将面积的比转化为,将代入曲线和圆的极坐标方程,求得,,由此求得的表达式,利用辅助角公式进行化简,并根据三角函数的值域,求得的最大值.
(Ⅰ)曲线的普通方程为,由普通方程与极坐标方程的互化公式的的极坐标方程为:,即. 曲线的极坐标方程为: .
(Ⅱ)因为与以点为顶点时,它们的高相同,即 ,
由(Ⅰ)知,,所以 ,
由得,所以当即时,有最大值为,
因此 的最大值为.
练习册系列答案
相关题目