题目内容
【题目】某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,统计结果如下表所示,已知这100位顾客中一次购物量超过7件的顾客占.
一次购物量 | 1至3件 | 4至7件 | 8至11件 | 12至15件 | 16件及以上 |
顾客数(人) | 27 | 20 | 10 | ||
结算时间(/人) | 0.5 | 1 | 1.5 | 2 | 2.5 |
(1)确定,的值,并求顾客一次购物的结算时间的平均值;
(2)从收集的结算时间不超过的顾客中,按分层抽样的方法抽取5人,再从这5人中随机抽取2人,求至少有1人的结算时间为的概率.(注:将频率视为概率)
【答案】(1),,;(2)
【解析】
(1)由条件可得,从而可求出,的值,再计算顾客一次购物的结算时间的平均值
(2)结算时间不超过的顾客有45人,则按分层抽样抽取5人,从结算时间为的人中抽取2人,从结算时间为的人中抽取3人,列举出基本事件数,再列举出至少有1人结算时间为所包含基本事件数,用古典概率可求解.
解:(1)由已知得,∴,
,∴.
该超市所有顾客一次购物的结算时间组成一个总体,
所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,
顾客一次购物的结算时间的平均值可用样本平均数估计,
其估计值为.
(2)结算时间不超过共有45人,其中结算时间为的有18人,
结算时间为的有27人,
结算时间为的人数:结算时间为的人数,
则按分层抽样抽取5人,从结算时间为的人中抽取人,
从结算时间为的人中抽取人.
记抽取结算时间为的2人分别为,,
抽取结算时间为的3人分别为,,,
表示抽取的两人为,,基本事件共有10个:
,,,,,,
,,,.
记至少有1人结算时间为为事件,包含基本事件共有7个:
,,,,,,,
∴,故至少有1人结算时间为的概率.
【题目】袋子中有四张卡片,分别写有“瓷、都、文、明”四个字,有放回地从中任取一张卡片,将三次抽取后“瓷”“都”两个字都取到记为事件,用随机模拟的方法估计事件发生的概率.利用电脑随机产生整数0,1,2,3四个随机数,分别代表“瓷、都、文、明”这四个字,以每三个随机数为一组,表示取卡片三次的结果,经随机模拟产生了以下18组随机数:
232 | 321 | 230 | 023 | 123 | 021 | 132 | 220 | 001 |
231 | 130 | 133 | 231 | 031 | 320 | 122 | 103 | 233 |
由此可以估计事件发生的概率为( )
A. B. C. D.