题目内容

2.已知直线l的方程为2x-y+1=0
(Ⅰ)求过点A(3,2),且与直线l垂直的直线l1方程;
(Ⅱ)求与直线l平行,且到点P(3,0)的距离为$\sqrt{5}$的直线l2的方程.

分析 (Ⅰ)设与直线l:2x-y+1=0垂直的直线l1的方程为:x+2y+m=0,把点A(3,2)代入解得m即可;
(Ⅱ)设与直线l:2x-y+1=0平行的直线l2的方程为:2x-y+c=0,由于点P(3,0)到直线l2的距离为$\sqrt{5}$.可得$\frac{|2×3+c|}{\sqrt{{2}^{2}+{1}^{2}}}$=$\sqrt{5}$,解得c即可得出.

解答 解:(Ⅰ)设与直线l:2x-y+1=0垂直的直线l1的方程为:x+2y+m=0,
把点A(3,2)代入可得,3+2×2+m=0,解得m=-7.
∴过点A(3,2),且与直线l垂直的直线l1方程为:x+2y-7=0;
(Ⅱ)设与直线l:2x-y+1=0平行的直线l2的方程为:2x-y+c=0,
∵点P(3,0)到直线l2的距离为$\sqrt{5}$.
∴$\frac{|2×3+c|}{\sqrt{{2}^{2}+{1}^{2}}}$=$\sqrt{5}$,
解得c=-1或-11.
∴直线l2方程为:2x-y-1=0或2x-y-11=0.

点评 本题考查了相互平行与垂直的直线斜率之间的关系、点到直线的距离公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网