题目内容
19.已知偶函数f(x)在[0,+∞)单调递减,若f(x-1)>f(2),则x的取值范围是(-1,3).分析 根据函数奇偶性和单调性之间的关系,将不等式进行转化即可.
解答 解:∵偶函数f(x)在[0,+∞)单调递减,
∴不等式f(x-1)>f(2)等价为f(|x-1|)>f(2),
则|x-1|<2,
即-2<x-1<2,
则-1<x<3,
即不等式的解集为(-1,3),
故答案为:(-1,3)
点评 本题主要考查不等式的求解,利用函数奇偶性和单调性之间的关系进行转化是解决本题的关键.
练习册系列答案
相关题目
10.曲线y=$\frac{1}{3}$x3在点(1,$\frac{1}{3}$)处的切线与直线x+y-3=0的夹角为( )
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
7.某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;…第六组,成绩大于等于18秒且小于等于19秒.如图是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为x,成绩大于等于15秒且小于17秒的学生人数为y,平均成绩为z,则从频率分布直方图中可分析出x、y、z的值分别为( )
A. | 0.9,35,15.86 | B. | 0.9,45,15.5 | C. | 0.1,35,16 | D. | 0.1,45,16.8 |
14.在10个球中有6个红球和4个白球(各不相同),不放回地依次摸出2个球,在第一次摸出红球的条件下,第2次也摸到红球的概率为( )
A. | $\frac{3}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{10}$ | D. | $\frac{5}{9}$ |
7.已知随机变量 ξ 的分布列为P(ξ=k)=$\frac{1}{{2}^{k}}$( k=1,2,…),则 P(2<x≤4)为( )
A. | $\frac{3}{16}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{16}$ | D. | $\frac{5}{16}$ |
6.已知{an}为等差数列,若a1+a9=$\frac{π}{3}$,则cos(a3+a7)的值为( )
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |