题目内容

(本题满分10分)已知数列的首项
(1)求证:数列为等比数列;
(2)若,求最大的正整数.
(1)证明见解析(2)99.

试题分析:(1)本小题关键是把递推关系式配凑成的关系,再利用等比数列的定义加以说明即可;(2)本小题利用(1)的结论,可写出数列的通项公式,由此可求出其前n项和,再利用已知条件的不等式可找到最大的正整数.
试题解析:(1)∵,∴,且,∴数列是以为首项,为公比的等比数列.
(2)由(1)可求得,∴,又,若,则.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网