题目内容
【题目】已知函数.
(1)当时,讨论函数的单调性;
(2)当时,若不等式在时恒成立,求实数的取值范围.
【答案】(1)在上单调递增,在上单调递减;(2).
【解析】
(1)求出,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(2)当时,不等式在时恒成立,等价于在(1,+∞)上恒成立,令,先证明当时,不合题意,再分两种情况讨论即可筛选出符合题意的实数的取值范围.
(1)由题意,知,
∵当a<0,x>0时,有.
∴x>1时,;当0<x<1时,.
∴函数f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
(2)由题意,当a=1时,不等式在x∈(1,+∞)时恒成立.
整理,得在(1,+∞)上恒成立.
令.
易知,当b≤0时,,不合题意.
∴b>0
又,.
①当b≥时,.又在[1,+∞)上单调递减.
∴在[1,+∞)上恒成立,则h(x)在[1,+∞)上单调递减.
所以,符合题意;
②时,,,
又在[1,+∞)上单调递减,
∴存在唯一x0∈(1,+∞),使得.
∴当h(x)在(1,x0)上单调递增,在(x0,+∞)上单调递减.
又h(x)在x=1处连续,h(1)=0,∴h(x)>0在(1,x0)上恒成立,不合题意.
综上所述,实数b的取值范围为[,+∞ ).
【题目】如图,“六芒星”是由两个全等正三角形组成,中心重合于点且三组对边分别平行,点是“六芒星”(如图)的两个顶点,动点在“六芒星”上(内部以及边界),若,则的取值可能是( )
A.B.1C.5D.9
【题目】某小型企业甲产品生产的投入成本x(单位:万元)与产品销售收入y(单位:万元)存在较好的线性关系,下表记录了最近5次该产品的相关数据.
x(万元) | 3 | 5 | 7 | 9 | 11 |
y(万元) | 8 | 10 | 13 | 17 | 22 |
(1)求y关于x的线性回归方程;
(2)根据(1)中的回归方程,判断该企业甲产品投入成本12万元的毛利率更大还是投入成本15万元的毛利率更大(毛利率)?
相关公式:,.