题目内容

8.定义在R上的偶函数f(x)满足f(x+2)-f(x)=0,且在[-1,0]上单调递增,设a=f(log32),b=f(-$\frac{1}{3}$log32),c=f($\frac{19}{12}$),则a,b,c的大小关系是(  )
A.a>b>cB.a>c>bC.b>c>aD.c>b>a

分析 由题意y=f(x)是定义在R上的偶函数,满足f(x+2)=f(x),可以知道该函数的周期为2,再利用f(x)为偶函数且在[-1,0]上为增函数,可以由题意画出一个草图即可判断

解答 解:因为f(x+2)=f(x)  由函数的周期定义可知该函数的周期为2,由于f(x)为定义在R上的偶函数且在[-1,0]上为单调递增函数,所以由题意可以画出一下的函数草图为:

又c=f($\frac{19}{12}$)=f(2-$\frac{19}{12}$)=f($\frac{5}{12}$)
b=f(-$\frac{1}{3}$log32)=f($\frac{1}{3}$log32),

故选C.

点评 本题考查了函数的周期性,对称性及有抽象函数式子赋值的方法,还考查了学生对于抽象问题的具体化及数形结合的思想.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网