ÌâÄ¿ÄÚÈÝ
19£®2003Äê10ÔÂ15ÈÕ£¬ÎÒ¹ú×ÔÐÐÑÐÖƵÄÊ׸öÔØÈËÓîÖæ·É´¬¡°ÉñÖÝÎåºÅ¡±ÔÚ¾ÆȪÎÀÐÇ·¢ÉäÖÐÐÄʤÀûÉý¿Õ£¬ÊµÏÖÁËÖлªÃñ×åǧÄêµÄ·ÉÌìÃΣ¬·É´¬½øÈëµÄÊÇÍÖÔ²¹ìµÀ£¬ÒÑÖª¸ÃÍÖÔ²¹ìµÀÓëµØÇò±íÃæµÄ×î½ü¾àÀëԼΪ200¹«À×îÔ¶¾àÀëÔ¼350¹«ÀµØÇò°ë¾¶Ô¼Îª6370¹«À£¬Ôò¹ìµÀÍÖÔ²µÄ±ê×¼·½³ÌΪ£¨¾«È·µ½¹«À$\frac{{x}^{2}}{6645}$+$\frac{{y}^{2}}{6570¡Á6720}$=1£®£¨×¢£ºµØÇòÇòÐÄλÓÚÍÖÔ²¹ìµÀµÄÒ»¸ö½¹µã£¬Ð´³öÒ»¸ö·½³Ì¼´¿É£©·ÖÎö ÉèÍÖÔ²·½³ÌΪ£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬ÓÉÍÖÔ²Éϵĵ㵽½¹µãµÄ¾àÀëµÄ×îСֵΪa-c£¬×î´óֵΪa+c£¬Áгö·½³Ì£¬½â·½³Ì£¬¼´¿ÉµÃµ½a£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£®
½â´ð ½â£ºÉèÍÖÔ²·½³ÌΪ£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬
ÓÉÍÖÔ²Éϵĵ㵽½¹µãµÄ¾àÀëµÄ×îСֵΪa-c£¬×î´óֵΪa+c£¬
Ôòa-c=6370+200=6570£¬a+c=350+6370=6720£¬
½âµÃ£¬a=6645£¬b2=a2-c2=6570¡Á6720£¬
ÔòÓÐÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{6645}$+$\frac{{y}^{2}}{6570¡Á6720}$=1£®
¹Ê´ð°¸Îª£º$\frac{{x}^{2}}{6645}$+$\frac{{y}^{2}}{6570¡Á6720}$=1£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬¿¼²éÍÖÔ²Éϵĵ㵽½¹µãµÄ¾àÀëµÄ×îÖµ£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
14£®ÒÑÖªº¯Êýy=log${\;}_{\frac{1}{2}}$£¨x2-ax+a£©ÔÚ£¨$\sqrt{2}$£¬+¡Þ£©ÉÏÊǼõº¯Êý£¬ÔòaµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£® | [2$\sqrt{2}$£¬4£© | B£® | [2$\sqrt{2}$£¬$\sqrt{2}$+2] | C£® | £¨-¡Þ£¬2$\sqrt{2}$] | D£® | [2$\sqrt{2}$£¬+¡Þ£© |
8£®¶¨ÒåÔÚRÉϵÄżº¯Êýf£¨x£©Âú×ãf£¨x+2£©-f£¨x£©=0£¬ÇÒÔÚ[-1£¬0]Éϵ¥µ÷µÝÔö£¬Éèa=f£¨log32£©£¬b=f£¨-$\frac{1}{3}$log32£©£¬c=f£¨$\frac{19}{12}$£©£¬Ôòa£¬b£¬cµÄ´óС¹ØϵÊÇ£¨¡¡¡¡£©
A£® | a£¾b£¾c | B£® | a£¾c£¾b | C£® | b£¾c£¾a | D£® | c£¾b£¾a |
9£®Ö±Ïß2x-5y+20=0Óë×ø±êÖá½»ÓÚÁ½µã£¬ÒÔ×ø±êÖáΪ¶Ô³ÆÖᣬÒÔÆäÖÐÒ»¸öµãΪ½¹µãÇÒÁíÒ»¸öµãΪÐéÖá¶ËµãµÄË«ÇúÏߵıê×¼·½³ÌÊÇ£¨¡¡¡¡£©
A£® | $\frac{{x}^{2}}{84}$-$\frac{{y}^{2}}{16}$=1 | B£® | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{84}$=1 | ||
C£® | $\frac{{x}^{2}}{100}$-$\frac{{y}^{2}}{84}$=1 | D£® | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{84}$=1»ò$\frac{{x}^{2}}{100}$-$\frac{{y}^{2}}{84}$=1 |