ÌâÄ¿ÄÚÈÝ
18£®ÒÑÖª¹«²îΪ2µÄµÈ²îÊýÁÐ{an}Óë¸÷ÏîΪÕýÇÒÊ×ÏîΪ1µÄµÈ±ÈÊýÁÐ{bn}Âú×ã$\frac{{a}_{1}}{{b}_{1}}$£¬$\frac{{a}_{2}}{{b}_{3}}$£¬$\frac{{a}_{4}}{{b}_{5}}$³É¹«±ÈΪ$\frac{1}{2}$µÄµÈ±ÈÊýÁУ®£¨1£©Çó{an}£¬{bn}µÄͨÏʽ£»
£¨2£©ÇóÊýÁÐ{$\frac{1}{{a}_{n}{a}_{n+1}$}µÄÇ°nÏîºÍSn£®
·ÖÎö £¨1£©ÀûÓõȲîÊýÁÐÓëµÈ±ÈÊýÁеÄͨÏʽ¼´¿ÉµÃ³ö£»
£¨2£©ÀûÓá°ÁÑÏîÇóºÍ¡±¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©¡ß¹«²îΪ2µÄµÈ²îÊýÁÐ{an}Óë¸÷ÏîΪÕýÇÒÊ×ÏîΪ1µÄµÈ±ÈÊýÁÐ{bn}Âú×ã$\frac{{a}_{1}}{{b}_{1}}$£¬$\frac{{a}_{2}}{{b}_{3}}$£¬$\frac{{a}_{4}}{{b}_{5}}$³É¹«±ÈΪ$\frac{1}{2}$µÄµÈ±ÈÊýÁУ¬ÉèµÈ±ÈÊýÁÐ{bn}µÄ¹«±ÈΪq£¬
¡à$\frac{{a}_{2}}{{b}_{3}}$=$\frac{{a}_{1}}{{b}_{1}}$¡Á$\frac{1}{2}$£¬$\frac{{a}_{4}}{{b}_{5}}$=$\frac{{a}_{1}}{{b}_{1}}$¡Á$£¨\frac{1}{2}£©^{2}$£¬»¯Îª$2£¨{a}_{1}+2£©={a}_{1}{q}^{2}$£¬$4£¨{a}_{1}+6£©={a}_{1}{q}^{4}$£¬q£¾0£®
½âµÃa1=2£¬q=2£®
¡àan=2+2£¨n-1£©=2n£¬bn=2n-1£®
£¨2£©$\frac{1}{{a}_{n}{a}_{n+1}$=$\frac{1}{2n¡Á2£¨n+1£©}$=$\frac{1}{4}£¨\frac{1}{n}-\frac{1}{n+1}£©$£¬
¡àÊýÁÐ{$\frac{1}{{a}_{n}{a}_{n+1}$}µÄÇ°nÏîºÍSn=$\frac{1}{4}[£¨1-\frac{1}{2}£©+£¨\frac{1}{2}-\frac{1}{3}£©+¡+£¨\frac{1}{n}-\frac{1}{n+1}£©]$
=$\frac{1}{4}£¨1-\frac{1}{n+1}£©$=$\frac{n}{4n+4}$£®
µãÆÀ ±¾Ì⿼²éÁË¡°ÁÑÏîÇóºÍ¡±¡¢µÈ²îÊýÁÐÓëµÈ±ÈÊýÁеÄͨÏʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮