题目内容
【题目】随机变量X的分布列为
X | ﹣1 | 0 | 1 | 2 | 3 |
P | 0.16 | a2 | 0.3 |
(1)求a的值;
(2)求E(X);
(3)若Y=2X﹣3,求E(Y).
【答案】
(1)
解:根据题意得,
0.16+ +a2+ +0.3=1,
整理得50a2+15a﹣27=0,
解得a=0.6或a=﹣0.9(不合题意,舍去),
所以a的值为0.6;
(2)
解:根据X的分布列,得
E(X)=﹣1×0.16+0× +1×0.62+2× +3×0.3=1.34;
(3)
解:当Y=2X﹣3时,
E(Y)=E(2X﹣3)
=2E(X)﹣3
=2×1.34﹣3
=0.32.
【解析】(1)根据概率和为1,列出方程即可求出a的值;(2)根据X的分布列,即可计算数学期望值E(X);(3)根据随机变量的数学期望计算公式,计算E(Y)=E(2X﹣3)=2E(X)﹣3.
【题目】专家研究表明,2.5是霾的主要成份,在研究2.5形成原因时,某研究人员研究了2.5与燃烧排放的、、、等物质的相关关系.下图是某地某月2.5与和相关性的散点图.
(Ⅰ)根据上面散点图,请你就,对2.5的影响关系做出初步评价;
(Ⅱ)根据有关规定,当排放量低于时排放量达标,反之为排放量超标;当2.5值大于时雾霾严重,反之雾霾不严重.根据2.5与相关性的散点图填写好下面列联表,并判断有多大的把握认为“雾霾是否严重与排放量有关”:
雾霾不严重 | 雾霾严重 | 总计 | |
排放量达标 | |||
排放量超标 | |||
总计 |
(Ⅲ)我们知道雾霾对交通影响较大.某市交通部门发现,在一个月内,当排放量分别是60,120,180时,某路口的交通流量(单位:万辆)一次是800,600,200,而在一个月内,排放量是60,120,180的概率一次是,,(),求该路口一个月的交通流量期望值的取值范围.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |