题目内容
【题目】专家研究表明,2.5是霾的主要成份,在研究2.5形成原因时,某研究人员研究了2.5与燃烧排放的、、、等物质的相关关系.下图是某地某月2.5与和相关性的散点图.
(Ⅰ)根据上面散点图,请你就,对2.5的影响关系做出初步评价;
(Ⅱ)根据有关规定,当排放量低于时排放量达标,反之为排放量超标;当2.5值大于时雾霾严重,反之雾霾不严重.根据2.5与相关性的散点图填写好下面列联表,并判断有多大的把握认为“雾霾是否严重与排放量有关”:
雾霾不严重 | 雾霾严重 | 总计 | |
排放量达标 | |||
排放量超标 | |||
总计 |
(Ⅲ)我们知道雾霾对交通影响较大.某市交通部门发现,在一个月内,当排放量分别是60,120,180时,某路口的交通流量(单位:万辆)一次是800,600,200,而在一个月内,排放量是60,120,180的概率一次是,,(),求该路口一个月的交通流量期望值的取值范围.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
【答案】(Ⅰ)对有正相关关系,而对没有相关关系;(Ⅱ)见解析;(Ⅲ)见解析.
【解析】试题分析:(Ⅰ)根据左图的散点分布在一个条形区域内,可得与具有正相关关系,而右图散点之间分布较散不具有较强的相关关系;(Ⅱ)根据散点图完成列联表,计算出的值,可判断结果;(Ⅲ)根据概率和为将用表示,计算出期望值根据的范围得到期望的范围.
试题解析:(Ⅰ)对有正相关关系,而对没有相关关系.
(Ⅱ)列联表如下:
雾霾不严重 | 雾霾严重 | 总计 | |
排放量达标 | 13 | 5 | 18 |
排放量超标 | 2 | 10 | 12 |
总计 | 15 | 15 | 30 |
由表中数据可知.
故有99.5%的把握认为“雾霾是否严重与排放量有关”.
(Ⅲ)设交通流量是,则得如下分布列:
交通流量 | 800 | 600 | 200 |
因为,所以.
即,即交通流量期望值在566.7万辆到800万辆之间.
【题目】近代统计学的发展起源于二十世纪初,它是在概率论的基础上发展起来的,统计性质的工作可以追溯到远古的“结绳记事”和《二十四史》中大量的关于我人口、钱粮、 水文、天文、地震等资料的记录.近几年,雾霾来袭,对某市该年11月份的天气情况进行统计,结果如下:表一
日期 |
|
|
|
|
|
|
|
|
|
|
|
| |||
天气 | 晴 | 霾 | 霾 | 阴 | 霾 | 霾 | 阴 | 霾 | 霾 | 霾 | 阴 | 晴 | 霾 | 霾 | 霾 |
日期 |
|
|
|
|
|
| |||||||||
天气 | 霾 | 霾 | 霾 | 阴 | 晴 | 霾 | 霾 | 晴 | 霾 | 晴 | 霾 | 霾 | 霾 | 晴 | 霾 |
由于此种情况某市政府为减少雾霾于次年采取了全年限行的政策.
下表是一个调査机构对比以上两年11月份(该年不限行 天、次年限行天共 天)的调查结果:
表二
不限行 | 限行 | 总计 | |
没有雾霾 |
| ||
有雾霾 |
| ||
总计 |
(1)请由表一数据求 ,并求在该年11月份任取一天,估计该市是晴天的概率;
(2)请用统计学原理计算若没有 的把握认为雾霾与限行有关系,则限行时有多少天没有雾霾?
(由于不能使用计算器,所以表中数据使用时四舍五入取整数)