题目内容
已知函数,在下列区间中,包含f(x)零点的区间是
A.
(0,1)
B.
(1,2)
C.
(2,4)
D.
(4,+∞)
已知复数z满足(3+4i)z=25,则z=
3-4i
3+4i
-3-4i
-3+4i
已知函数f(x)=ex-ax(a为常数)的图像与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1.
(1)求a的值及函数f(x)的极值;
(2)证明:当x>0时,x2<ex
(3)证明:对任意给定的正数e,总存在x0,使得当x∈(x0,+∞)时,恒有x<cex.
在平行四边形ABCD中,AB=BD=CD=1,AB⊥BCD,CD⊥BD.将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图.
(1)求证:CD⊥CD;
(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.
若集合A={0,1,2,4},B={1,2,3},则A∩B=
{0,1,2,3,4}
{0,4}
{1,2}
{3}
某三棱锥的三视图如图所示,则该三棱锥的最长棱的棱长为________.
从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:
(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;
(2)求频率分布直方图中的a,b的值;
(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论).
如图,在ΔABC中,,点D在BC边上,且
(1)求sin∠BAD.
(2)求BD,AC的长.
商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a,最高销售限价b(b>a)以及实数x(0<x<1)确定实际销售价格c=a+x(b-a).这里,x被称为乐观系数.经验表明,最佳乐观系数x恰好使得(c-a)是(b-c)和(b-a)的等比中项,据此可得,最佳乐观系数x的值等于________.