题目内容
4.已知双曲线$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点.若双曲线的离心率为2,△ABO的面积为$\sqrt{3}$,则p的值为( )A. | $\sqrt{6}$ | B. | $2\sqrt{3}$ | C. | 2 | D. | $\sqrt{2}$ |
分析 求出双曲线$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$(a>0,b>0)的渐近线方程与抛物线y2=2px(p>0)的准线方程,进而求出A,B两点的坐标,再由双曲线的离心率为2,△AOB的面积为$\sqrt{3}$,列出方程,由此方程求出p的值.
解答 解:∵双曲线$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$(a>0,b>0),
∴双曲线的渐近线方程是y=±$\frac{a}{b}$x
又抛物线y2=2px(p>0)的准线方程是x=-$\frac{p}{2}$,
故A,B两点的纵坐标分别是y=±$\frac{pa}{2b}$,
又由双曲线的离心率为2,所以$\frac{c}{a}$=2,则$\frac{b}{a}$=$\sqrt{3}$,
A,B两点的纵坐标分别是y=±$\frac{\sqrt{3}p}{6}$,
又△AOB的面积为$\sqrt{3}$,x轴是角AOB的角平分线,
∴$\frac{1}{2}×\frac{\sqrt{3}}{3}p×\frac{p}{2}=\sqrt{3}$,得p=2$\sqrt{3}$.
故选:B.
点评 本题考查圆锥曲线的共同特征,解题的关键是求出双曲线的渐近线方程,解出A,B两点的坐标,列出三角形的面积与离心率的关系也是本题的解题关键,有一定的运算量,做题时要严谨,防运算出错.
练习册系列答案
相关题目
12.已知函数f(x)=sin(x-$\frac{π}{3}$),若x1x2>0,且f(x1)+f(x2)=0,则|x1+x2|的最小值为( )
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{2π}{3}$ |
14.以双曲线$\frac{{x}^{2}}{10}$-$\frac{{y}^{2}}{15}$=1的右焦点为圆心,且与其渐近线相切的圆的方程是( )
A. | x2+y2-10x+10=0 | B. | x2+y2-10x+15=0 | C. | x2+y2+10x+15=0 | D. | x2+y2+10x+10=0 |