题目内容
【题目】已知圆,直线, .
(1)求证:对,直线与圆总有两个不同的交点;
(2)求弦的中点的轨迹方程,并说明其轨迹是什么曲线;
(3)是否存在实数,使得原上有四点到直线的距离为?若存在,求出的范围;若不存在,说明理由.
【答案】(1)见解析;(2)M的轨迹方程是,它是一个以为圆心,以为半径的圆;(3)或.
【解析】【试题分析】(1)依据题设可以运用圆心与直线的距离或考虑动直线过定点分析判断;(2)借助题设条件运用圆心与弦中点的连线与直线垂直建立方程求解;(3)依据题设借助图形的直观,运用圆心距与直线的位置和数量关系建立不等式:
(1)圆的圆心为,半径为,所以圆心C到直线的距离.
所以直线与圆C相交,即直线与圆总有两个不同的交点;
或:直线的方程可化为,无论m怎么变化,直线过定点,由于,所以点是圆C内一点,故直线与圆总有两个不同的交点.
(2)设中点为,因为直线恒过定点,
当直线的斜率存在时, ,又, ,
所以,化简得.
当直线的斜率不存在时,中点也满足上述方程.
所以M的轨迹方程是,它是一个以为圆心,以为半径的圆.
(3) 假设存在直线,使得圆上有四点到直线的距离为,由于圆心,半径为,则圆心到直线的距离为
化简得,解得或.
【题目】某公交公司为了方便市民出行、科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为研究车辆发车间隔时间(分钟)与乘客等候人数(人)之间的关系,经过调查得到如下数据:
间隔时间(分钟) | ||||||
等候人数(人) |
调查小组先从这组数据中选取组数据求线性回归方程,再用剩下的组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数的差,若差值的绝对值不超过,则称所求线性回归方程是“恰当回归方程”.
(1)从这组数据中随机选取组数据后,求剩下的组数据的间隔时间之差大于的概率;
(2)若选取的是后面组数据,求关于的线性回归方程,并判断此方程是否是“恰当回归方程”;
(3)在(2)的条件下,为了使等候的乘客不超过人,则间隔时间最多可以设置为多少分钟?(精确到整数)
参考公式:,.