题目内容
【题目】已知函数,其中,.
(1)函数的图象能否与x轴相切?若能,求出实数a;若不能,请说明理由.
(2)若在处取得极大值,求实数a的取值范围.
【答案】(1) 答案见解析(2)
【解析】
(1)假设函数的图象与x轴相切于,根据相切可得方程组,看方程是否有解即可;(2)求出的导数,设(),根据函数的单调性及在处取得极大值求出a的范围即可.
(1)函数的图象不能与x轴相切,理由若下:
.假设函数的图象与x轴相切于
则即
显然,,代入中得,无实数解.
故函数的图象不能与x轴相切.
(2)()
,,
设(),
恒大于零.
在上单调递增.
又,,,
∴存在唯一,使,且
时,时,
①当时,恒成立,在单调递增,
无极值,不合题意.
②当时,可得当时,,当时,.
所以在内单调递减,在内单调递增,
所以在处取得极小值,不合题意.
③当时,可得当时,,当时,.
所以在内单调递增,在内单调递减,
所以在处取得极大值,符合题意.
此时由得即,
综上可知,实数a的取值范围为.
练习册系列答案
相关题目