题目内容
【题目】如图,在平面直角坐标系xOy中,已知椭圆的离心率为,且过点. 为椭圆的右焦点, 为椭圆上关于原点对称的两点,连接分别交椭圆于两点.
⑴求椭圆的标准方程;
⑵若,求的值;
⑶设直线, 的斜率分别为, ,是否存在实数,使得,若存在,求出的值;若不存在,请说明理由.
【答案】(1)(2) (3)
【解析】试题分析:(1);(2)由椭圆对称性,知,所以,此时直线方程为,故. (3)设,则,通过直线和椭圆方程,解得, ,所以,即存在。
试题解析:
(1)设椭圆方程为,由题意知:
解之得: ,所以椭圆方程为:
(2)若,由椭圆对称性,知,所以,
此时直线方程为,
由,得,解得(舍去),
故.
(3)设,则,
直线的方程为,代入椭圆方程,得
,
因为是该方程的一个解,所以点的横坐标,
又在直线上,所以,
同理, 点坐标为, ,
所以,
即存在,使得.
【题目】到2020年,我国将全面建立起新的高考制度,新高考采用模式,其中语文、数学、英语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣、爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门(6选3)参加考试,满分各100分.为了顺利迎接新高考改革,某学校采用分层抽样的方法从高一年级1000名(其中男生550名,女生450名)学生中抽取了名学生进行调查.
(1)已知抽取的名学生中有女生45名,求的值及抽取的男生的人数.
(2)该校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目,且只能选择一个科目),得到如下列联表.
选择“物理” | 选择“地理” | 总计 | |
男生 | 10 | ||
女生 | 25 | ||
总计 |
(i)请将列联表补充完整,并判断是否有以上的把握认为选择科目与性别有关系.
(ii)在抽取的选择“地理”的学生中按性别分层抽样抽取6名,再从这6名学生中抽取2名,求这2名中至少有1名男生的概率.
附:,其中.
0.05 | 0.01 | |
3.841 | 6.635 |