题目内容
【题目】已知,.
(1)讨论的单调区间;
(2)当时,证明:.
【答案】(1)在上单调递减;在和上单调递增.(2)见解析
【解析】
(1)先求函数的定义域,再进行求导得,对分成,,三种情况讨论,求得单调区间;
(2)要证由,等价于证明,再对分,两种情况讨论;证明当时,不等式成立,可先利用放缩法将参数消去,转化成证明不等式成立,再利用构造函数,利用导数证明其最小值大于0即可。
(1)的定义域为,
,
当时,由,得;
由,得,
所以在上单调递减,在上单调递增;
当时,由,得或;
由,得;
所以在上单调递减,在和上单调递增;
当时,由,得在上单调递增;
当时,由,得或;由,得;
所以在上单调递减;在和上单调递增.
(2)由,得,
①当时,,,不等式显然成立;
②当时,,由,得,
所以只需证:,
即证,令,
则,,
令,
则,
令,
则,
所以在上为增函数,
因为,,
所以存在,,
所以在上单调递减,在上单调递增,
又因为,,
当时,,在上单调递减,
当时,,在上单调递增,
所以,
所以,
所以原命题得证
练习册系列答案
相关题目
【题目】高三年级某班50名学生期中考试数学成绩的频率分布直方图如图所示,成绩分组区间为:.其中a,b,c成等差数列且.物理成绩统计如表.(说明:数学满分150分,物理满分100分)
分组 | |||||
频数 | 6 | 9 | 20 | 10 | 5 |
(1)根据频率分布直方图,请估计数学成绩的平均分;
(2)根据物理成绩统计表,请估计物理成绩的中位数;
(3)若数学成绩不低于140分的为“优”,物理成绩不低于90分的为“优”,已知本班中至少有一个“优”同学总数为6人,从此6人中随机抽取3人,记X为抽到两个“优”的学生人数,求X的分布列和期望值.