题目内容
【题目】设函数
(1)当时,求函数的极值.
(2)若函数在区间上有唯一的零点,求实数的取值范围.
【答案】(1)极小值为,无极大值;(2)
【解析】
(1)由a=1,得函数f(x)的解析式,求出其导函数以及导数为0的根,通过比较两根的大小找到函数的单调区间,进而求出f(x)的极小值;(2)求导后按a 进行分类讨论,求出a的范围.
(1) 时, 函数的定义域为
令解得或(舍)
时,,单调递减;时,,单调递增
列表如下
1 | |||
- | 0 | + | |
单调递减 | 极小值 | 单调递增 |
所以时,函数的极小值为,函数无极大值.
(2) ,其中
当时,恒成立,单调递增,又因为
所以函数在区间上有唯一的零点,符合题意。
当时,恒成立,单调递减,又因为
所以函数在区间上有唯一的零点,符合题意。
当时,
时,,单调递减,又因为
所以函数在区间上有唯一的零点;
时,,单调递增,又因为
所以当时符合题意,即
所以时,函数在区间上有唯一的零点;
所以的取值范围是
练习册系列答案
相关题目
【题目】某同学用“五点法”画函数在某一个周期内的图像时,列表并填入了部分数据,如下表:
0 | |||||
0 | 3 | 0 | 0 |
(1)请将上表数据补充完整,并写出函数的解析式(直接写出结果即可);
(2)根据表格中的数据作出在一个周期内的图像;
(3)求函数在区间上的最大值和最小值.
【题目】某种设备随着使用年限的增加,每年的维护费相应增加.现对一批该设备进行调查,得到这批设备自购入使用之日起,前5年平均每台设备每年的维护费用大致如表:
年份(年) | |||||
维护费(万元) |
已知.
(I)求表格中的值;
(II)从这年中随机抽取两年,求平均每台设备每年的维护费用至少有年多于万元的概率;
(Ⅲ)求关于的线性回归方程;并据此预测第几年开始平均每台设备每年的维护费用超过万元.
参考公式:用最小二乘法求线性回归方程的系数公式: