题目内容
4.已知等差数列{an}的各项均为正整数,且a8=2015,则a1的最小值是6.分析 根据等差数列的通项公式表示出a1=2015-7d,则当d取最大值时,即可得到结论.
解答 解:设公差为d,则d为整数(d>0),
由a8=a1+7d=2015,
得a1=2015-7d,
∵2015=7×287+6,
∴当d=287时,a1=6最小,
故答案为:6.
点评 本题主要考查等差数列通项公式的应用,比较基础.
练习册系列答案
相关题目
14.若x<y与$\frac{1}{x}<\frac{1}{y}$同时成立,则( )
A. | x>0,y>0 | B. | x>0,y<0 | C. | x<0,y>0 | D. | x<0,y<0 |
15.等比数列{an}中,a1=1,a5=4,则a3=( )
A. | ±2 | B. | 2 | C. | -2 | D. | ±$\sqrt{2}$ |
19.数列{an}满足a1=1,an+1=an-3(n∈N*),则a4=( )
A. | 10 | B. | 8 | C. | -8 | D. | -10 |
9.等差数列{an}的前n项和为Sn,若a7的值为常数,则下列各数中也是常数的是( )
A. | S7 | B. | S8 | C. | S13 | D. | S15 |
13.sin1290°的值为( )
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |