题目内容
【题目】某学校高三年级有学生1000名,经调查研究,其中750名同学经常参加体育锻炼(称为类同学),另外250名同学不经常参加体育锻炼(称为类同学),现用分层抽样方法(按类、类分二层)从该年级的学生中共抽查100名同学.
(1)测得该年级所抽查的100名同学身高(单位:厘米) 频率分布直方图如图,按照统计学原理,根据频率分布直方图计算这100名学生身高数据的平均数和中位数(单位精确到0.01);
(2)如果以身高达到作为达标的标准,对抽取的100名学生,得到列联表:
体育锻炼与身高达标列联表
身高达标 | 身高不达标 | 合计 | |
积极参加体育锻炼 | 60 | ||
不积极参加体育锻炼 | 10 | ||
合计 | 100 |
①完成上表;
②请问有多大的把握认为体育锻炼与身高达标有关系?
参考公式:.
参考数据:
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)174,174.55;(2)①列联表见解析;②.
【解析】
(1)根据频率分布直方图的平均数与中位数的公式即可求解;
(2)①根据频率分布直方图求出身高达标与不达标的比例,结合积极参加体育锻炼和不积极参加体育锻炼的比例,完成表格;②根据公式计算出即可下结论.
(1)平均数,
前两组频率之和为0.25,前三组频率之和为0.8,所以中位数在第三组
中位数为.
(2)根据频率分布直方图可得身高不达标所占频率为0.25,达标所占频率为0.75,
所以身高不达标25人,达标75人,
根据分层抽样抽取的积极参加体育锻炼75人,不积极参加体育锻炼的25人,
所以表格为:
身高达标 | 身高不达标 | 合计 | |
积极参加体育锻炼 | 60 | 15 | 75 |
不积极参加体育锻炼 | 15 | 10 | 25 |
合计 | 75 | 25 | 100 |
假设体育锻炼与身高达标没有关系
.
所以有把握认为体育锻炼与身高达标有关系.
【题目】某校高三年级有男生105人,女生126人,教师42人,用分层抽样的方法从中抽取13人进行问卷调查.设其中某项问题的选择只有“同意”,“不同意”两种,且每人都做了一种选择.下面表格中提供了被调查人答卷情况的部分信息.
同意 | 不同意 | 合计 | |
教师 | 1 | ||
女生 | 4 | ||
男生 | 2 |
(1)请完成此统计表;
(2)试估计高三年级学生“同意”的人数;
(3)从被调查的女生中选取2人进行访谈,求选到的两名学生中,恰有一人“同意”、一人“不同意”的概率.