题目内容

如图,四棱锥P-ABCD的底面为菱形且∠DAB=60°,PA⊥底面ABCD,AB=2,PA=2
3
,E为PC的中点.
(1)求直线DE与平面PAC所成角的大小;
(2)求C点到平面PBD的距离.
(1)如图,连AC,BD交于点O,又由底面ABCD为菱形可得BD⊥AC,且点O是AC的中点,连接OE,又E为PC的中点,所以EOPA.
由PA⊥底面ABCD,可得EO⊥底面ABCD
以O为原点,OA,OB,OE分别为x,y,z轴建立空间直角坐标系
则有O(0,0,0),A(
3
,0,0
),B(0,1,0),C(-
3
,0,0
),D(0,-1,0),P(
3
,0,2
3
),E(0,0,
3

依题意得
DB
=(0,2,0)
即为平面PAC的一个法向量
DE
=(0,1,
3
)
,所以cos<
DB
DE
>=
2
2×2
=
1
2

所以
DB
DE
>=60°
直线DE与平面PAC所成角的大小为30°
(2)由(1)知,
DB
=(0,2,0),
DP
=(
3
,1,2
3
),
CD
=(
3
,-1,0)

n
=(x,y,z)
为平面PBD的一个法向量
n
DB
n
DP
2y=0
3
x+y+2
3
z=0

令x=1,取
n
=(1,0,-2)
∴C点到平面PBD的距离为d,
d=
|
CD
n
|
|
n
|
=
3
5
=
3
5
5

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网