题目内容
已知三棱柱ABC-A1B1C1中,CA=CB,AB=A1A,∠BAA1=60°
(1)证明:AB⊥A1C;
(2)若平面ABC⊥平面AA1B1B,且AB=CB,求直线A1C与平面BB1C1C所成角的余弦值.

(1)证明:AB⊥A1C;
(2)若平面ABC⊥平面AA1B1B,且AB=CB,求直线A1C与平面BB1C1C所成角的余弦值.

证明:(1)取AB的中点O,连接OC,OA1,A1B,
因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,
所以△AA1B为等边三角形,所以OA1⊥AB,
又因为OC∩OA1=O,所以AB⊥平面OA1C,
又A1C?平面OA1C,故AB⊥A1C;
(2)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,
所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.
以O为坐标原点,
的方向为x轴的正向,|
|为单位长,建立如图所示的坐标系,
可得A(1,0,0),A1(0,
,0),C(0,0,
),B(-1,0,0),
则
=(1,0,
),
=
=(-1,
,0),
=(0,-
,
),
设
=(x,y,z)为平面BB1C1C的法向量,
则
,即
,
可取y=1,可得
=(
,1,-1),
故sin<
,
>=
=
∴cos<
,
>=
因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,
所以△AA1B为等边三角形,所以OA1⊥AB,
又因为OC∩OA1=O,所以AB⊥平面OA1C,
又A1C?平面OA1C,故AB⊥A1C;
(2)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,

所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.
以O为坐标原点,
OA |
OA |
可得A(1,0,0),A1(0,
3 |
3 |
则
BC |
3 |
. |
BB1 |
. |
AA1 |
3 |
A1C |
3 |
3 |
设
n |
则
|
|
可取y=1,可得
n |
3 |
故sin<
n |
A1C |
|
| ||||
|
|
| ||
5 |
∴cos<
n |
A1C |
| ||
5 |

练习册系列答案
相关题目