题目内容

【题目】已知函数 为自然对数的底数, .

(1)试讨论函数的单调性;

(2)当时, 恒成立,求实数的取值范围.

【答案】(1) 当时, 上单调递增;当时, 上单调递增,在上单调递减.

(2) .

【解析】试题分析:(1)对函数求导,关注定义域,对参数 a进行讨论,得出函数的单调性;(2)解决恒成立的最基本方法就是分离参数,化为时恒成立.设右边为函数g(x),通过两次求导研究函数g(x)的单调性和最大值,最后利用极值原理得出a的范围.

试题解析:

(1)的定义域为

时,则,∴上单调递增;

时,则由,∴

时, ,∴上单调递增;

时, ,∴上单调递减.

综上所述,当时, 上单调递增;

时, 上单调递增,在上单调递减.

(2)由题意得: 时恒成立,

时恒成立.

,( ),

. 

时恒成立,

上单调递减,

∴当时, ,∴ 上单调递增;

时, ,∴ 上单调递减.

处取得最大值

的取值范围是.

练习册系列答案
相关题目

【题目】如图,在四棱锥中,底面为菱形, 平面 分别是 的中点.

(1)证明:

(2)设为线段上的动点,若线段长的最小值为,求二面角的余弦值.

【答案】(1)见解析;(2)

【解析】试题分析:(1)证明线线垂直则需证明线面垂直,根据题意易得然后根据等边三角形的性质可得,因此平面,从而得证(2)先找到EH什么时候最短,显然当线段长的最小时, ,在中, ,∴,由中, ,∴.然后建立空间直角坐标系,写出两个面法向量再根据向量的夹角公式即可得余弦值

解析:(1)证明:∵四边形为菱形,

为正三角形.又的中点,∴.

,因此.

平面 平面,∴.

平面 平面

平面.又平面,∴.

(2)如图, 上任意一点,连接 .

当线段长的最小时, ,由(1)知

平面 平面,故.

中,

中, ,∴.

由(1)知 两两垂直,以为坐标原点,建立如图所示的空间直角坐标系,又 分别是 的中点,

可得

所以 .

设平面的一法向量为

因此

,则

因为 ,所以平面

为平面的一法向量.又

所以 .

易得二面角为锐角,故所求二面角的余弦值为.

型】解答
束】
20

【题目】2018湖北七市(州)教研协作体3月高三联考已知椭圆 的左顶点为,上顶点为,直线与直线垂直,垂足为点,且点是线段的中点.

I)求椭圆的方程;

II)如图,若直线 与椭圆交于 两点,点在椭圆上,且四边形为平行四边形,求证:四边形的面积为定值.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网