题目内容

【题目】已知数列{an}的各项均为正数,Sn是数列{an}的前n项和,且4Sn=an2+2an﹣3

1)求数列{an}的通项公式;

2)已知bn=2n,求Tn=a1b1+a2b2+…+anbn的值.

【答案】1an=3+2n﹣1=2n+1

2)(2n﹣12n+2

【解析】试题分析:(1)由题意知,解得a1=3,由此能够推出数列{an}是以3为首项,2为公差的等差数列,所以an=3+2n﹣1=2n+1

2)由题意知Tn=3×21+5×22+…+2n+12n2Tn=3×22+5×23+2n﹣12n+2n+12n+1,二者相减可得到Tn=a1b1+a2b2+…+anbn的值.

解:(1)当n=1时,,解出a1=3

4Sn=an2+2an﹣3①

n≥24sn1=an12+2an1﹣3②

①﹣②4an=an2﹣an12+2an﹣an1),即an2﹣an12﹣2an+an1=0

an+an1)(an﹣an1﹣2=0

∵an+an10∴an﹣an1=2n≥2),

数列{an}是以3为首项,2为公差的等差数列,∴an=3+2n﹣1=2n+1

2Tn=3×21+5×22+…+2n+12n

2Tn=3×22+5×23+2n﹣12n+2n+12n+1

④﹣③Tn=﹣3×21﹣222+23++2n+2n+12n+1﹣6+8﹣22n1+2n+12n+1=2n﹣12n+2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网