题目内容
【题目】已知数列{an}的各项均为正数,Sn是数列{an}的前n项和,且4Sn=an2+2an﹣3.
(1)求数列{an}的通项公式;
(2)已知bn=2n,求Tn=a1b1+a2b2+…+anbn的值.
【答案】(1)an=3+2(n﹣1)=2n+1;
(2)(2n﹣1)2n+2.
【解析】试题分析:(1)由题意知,解得a1=3,由此能够推出数列{an}是以3为首项,2为公差的等差数列,所以an=3+2(n﹣1)=2n+1.
(2)由题意知Tn=3×21+5×22+…+(2n+1)2n,2Tn=3×22+5×23+(2n﹣1)2n+(2n+1)2n+1,二者相减可得到Tn=a1b1+a2b2+…+anbn的值.
解:(1)当n=1时,,解出a1=3,
又4Sn=an2+2an﹣3①
当n≥2时4sn﹣1=an﹣12+2an﹣1﹣3②
①﹣②4an=an2﹣an﹣12+2(an﹣an﹣1),即an2﹣an﹣12﹣2(an+an﹣1)=0,
∴(an+an﹣1)(an﹣an﹣1﹣2)=0,
∵an+an﹣1>0∴an﹣an﹣1=2(n≥2),
∴数列{an}是以3为首项,2为公差的等差数列,∴an=3+2(n﹣1)=2n+1.
(2)Tn=3×21+5×22+…+(2n+1)2n③
又2Tn=3×22+5×23+(2n﹣1)2n+(2n+1)2n+1④
④﹣③Tn=﹣3×21﹣2(22+23++2n)+(2n+1)2n+1﹣6+8﹣22n﹣1+(2n+1)2n+1=(2n﹣1)2n+2
【题目】随着社会的发展,终身学习成为必要,工人知识要更新,学习培训必不可少,现某工厂有工人1000名,其中250名工人参加短期培训(称为类工人),另外750名工人参加过长期培训(称为类工人),从该工厂的工人中共抽查了100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数)得到类工人生产能力的茎叶图(左图),类工人生产能力的频率分布直方图(右图).
(1)问类、类工人各抽查了多少工人,并求出直方图中的;
(2)求类工人生产能力的中位数,并估计类工人生产能力的平均数(同一组中的数据用该组区间的中点值作代表);
(3)若规定生产能力在内为能力优秀,由以上统计数据在答题卡上完成下面的列联表,并判断是否可以在犯错误概率不超过0.1%的前提下,认为生产能力与培训时间长短有关.能力与培训时间列联表
短期培训 | 长期培训 | 合计 | |
能力优秀 | |||
能力不优秀 | |||
合计 |
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:,其中.