题目内容

2.若向量$\overrightarrow{a}$•$\overrightarrow{b}$=-2,|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=1,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为(  )
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{π}{6}$

分析 根据平面向量的数量积公式求向量的夹角.

解答 解:由已知向量$\overrightarrow{a}$•$\overrightarrow{b}$=-2,|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=1,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角的余弦值为:$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}=\frac{-2}{4}=-\frac{1}{2}$,由向量的夹角范围是[0,π],
所以向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{2π}{3}$;
故选:A.

点评 本题考查了利用平面向量的数量积公式求向量的夹角;熟记公式是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网