题目内容
【题目】已知函数,其中,为自然对数的底数.
(1)当时,证明:对;
(2)若函数在上存在极值,求实数的取值范围。
【答案】(1)见证明;(2)
【解析】
(1)利用导数说明函数的单调性,进而求得函数的最小值,得到要证明的结论;
(2)问题转化为导函数在区间上有解,法一:对a分类讨论,分别研究a的不同取值下,导函数的单调性及值域,从而得到结论.法二:构造函数,利用函数的导数判断函数的单调性求得函数的值域,再利用零点存在定理说明函数存在极值.
(1)当时,,于是,.
又因为,当时,且.
故当时,,即.
所以,函数为上的增函数,于是,.
因此,对,;
(2) 方法一:由题意在上存在极值,则在上存在零点,
①当时,为上的增函数,
注意到,,
所以,存在唯一实数,使得成立.
于是,当时,,为上的减函数;
当时,,为上的增函数;
所以为函数的极小值点;
②当时,在上成立,
所以在上单调递增,所以在上没有极值;
③当时,在上成立,
所以在上单调递减,所以在上没有极值,
综上所述,使在上存在极值的的取值范围是.
方法二:由题意,函数在上存在极值,则在上存在零点.
即在上存在零点.
设,,则由单调性的性质可得为上的减函数.
即的值域为,所以,当实数时,在上存在零点.
下面证明,当时,函数在上存在极值.
事实上,当时,为上的增函数,
注意到,,所以,存在唯一实数,
使得成立.于是,当时,,为上的减函数;
当时,,为上的增函数;
即为函数的极小值点.
综上所述,当时,函数在上存在极值.
【题目】某校有教师400人,对他们进行年龄状况和学历的调查,其结果如下:
学历 | 35岁以下 | 35-55岁 | 55岁及以上 |
本科 | 60 | 40 | |
硕士 | 80 | 40 |
(1)若随机抽取一人,年龄是35岁以下的概率为,求;
(2)在35-55岁年龄段的教师中,按学历状况用分层抽样的方法,抽取一个样本容量为5的样本,然后在这5名教师中任选2人,求两人中至多有1人的学历为本科的概率.
【题目】现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如下表.
月收入(单位百元) | ||||||
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 4 | 8 | 12 | 5 | 2 | 1 |
(1)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为“月收入以5500元为分界点对“楼市限购令”的态度有差异;
月收入不低于55百元的人数 | 月收入低于55百元的人数 | 合计 | |
赞成 | a=______________ | c=______________ | ______________ |
不赞成 | b=______________ | d=______________ | ______________ |
合计 | ______________ | ______________ | ______________ |
(2)试求从年收入位于(单位:百元)的区间段的被调查者中随机抽取2人,恰有1位是赞成者的概率。
参考公式:,其中.
参考值表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |