题目内容
【题目】已知,若函数有4个零点,则实数k的取值范围是______.
【答案】
【解析】
转化条件得有4个零点,令,画出两函数的图象后可得当函数过点和时、函数与的图象相切时,函数与的图象恰有3个交点;当在两者范围之间时,满足条件,利用导数的性质求出函数与的图象相切时的值即可得解.
由题意有4个零点即有4个零点,
设,则恒过点,
函数与的图象有4个交点,
在同一直角坐标系下作出函数与的图象,如图,
由图象可知,当时,函数与的图象至多有2个交点;
当函数过点和时,,此时函数与的图象恰有3个交点;
当函数与的图象相切时,
设切点为,,
,,解得,
,此时函数与的图象恰有3个交点;
当时,两函数图象至多有两个交点;
若要使函数有4个零点,则.
故答案为:.
【题目】某知名电商在双十一购物狂欢节中成交额再创新高,月日单日成交额达亿元.某店主在此次购物狂欢节期间开展了促销活动,为了解买家对此次促销活动的满意情况,随机抽取了参与活动的位买家,调查了他们的年龄层次和购物满意情况,得到年龄层次的频率分布直方图和“购物评价为满意”的年龄层次频数分布表.年龄层次的频率分布直方图:
“购物评价为满意”的年龄层次频数分布表:
年龄(岁) | |||||
频数 |
(1)估计参与此次活动的买家的平均年龄(同一组中的数据用该组区间的中点值做代表);
(2)若年龄在岁以下的称为“青年买家”,年龄在岁以上(含岁)的称为“中年买家”,完成下面的列联表,并判断能否有的把握认为中、青年买家对此次活动的评价有差异?
评价满意 | 评价不满意 | 合计 | |
中年买家 | |||
青年买家 | |||
合计 |
附:参考公式:.
【题目】随着食品安全问题逐渐引起人们的重视,有机、健康的高端绿色蔬菜越来越受到消费者的欢迎,同时生产—运输—销售一体化的直销供应模式,不仅减少了成本,而且减去了蔬菜的二次污染等问题.
(1)在有机蔬菜的种植过程中,有机肥料使用是必不可少的.根据统计某种有机蔬菜的产量与有机肥料的用量有关系,每个有机蔬菜大棚产量的增加量(百斤)与使用堆沤肥料(千克)之间对应数据如下表
使用堆沤肥料(千克) | 2 | 4 | 5 | 6 | 8 |
产量的增加量(百斤) | 3 | 4 | 4 | 4 | 5 |
依据表中的数据,用最小二乘法求出关于的线性回归方程;并根据所求线性回归方程,估计如果每个有机蔬菜大棚使用堆沤肥料10千克,则每个有机蔬菜大棚产量增加量是多少百斤?
(2)某大棚蔬菜种植基地将采摘的有机蔬菜以每份三斤称重并保鲜分装,以每份10元的价格销售到生鲜超市.“乐购”生鲜超市以每份15元的价格卖给顾客,如果当天前8小时卖不完,则超市通过促销以每份5元的价格卖给顾客(根据经验,当天能够把剩余的有机蔬菜都低价处理完毕,且处理完毕后,当天不再进货).该生鲜超市统计了100天有机蔬菜在每天的前8小时内的销售量(单位:份),制成如下表格(注:,且);
前8小时内的销售量(单位:份) | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
频数 | 10 | x | 16 | 6 | 15 | 13 | y |
若以100天记录的频率作为每日前8小时销售量发生的概率,该生鲜超市当天销售有机蔬菜利润的期望值为决策依据,当购进17份比购进18份的利润的期望值大时,求的取值范围.
附:回归直线方程为,其中.