题目内容
10.已知f(x)=x3-ax在(-∞,-1]上递增,则a的取值范围是( )A. | a>3 | B. | a≥3 | C. | a<3 | D. | a≤3 |
分析 先求出函数的导数,分离出a,从而求出a的范围.
解答 解:f′(x)=3x2-a,
若f(x)=x3-ax在(-∞,-1]上递增,
则f′(x)=3x2-a≥0在(-∞,-1]上恒成立,
即:a≤(3x2)min=3,
故选:D.
点评 本题考查了函数恒成立问题,考查导数的应用,是一道基础题.
练习册系列答案
相关题目
15.已知函数y=f(x)对于任意的$x∈(-\frac{π}{2},\frac{π}{2})$满足f′(x)cosx+f(x)sinx>0(其中f′(x)是函数f(x)的导函数),则下列不等式不成立的是( )
A. | $\sqrt{2}f(\frac{π}{3})<f(\frac{π}{4})$ | B. | $\sqrt{2}f(-\frac{π}{3})<f(-\frac{π}{4})$ | C. | $f(0)<\sqrt{2}f(\frac{π}{4})$ | D. | $f(0)<2f(\frac{π}{3})$ |
2.把分别标有“我”“爱”“你”的三张卡片随意的排成一排,则能使卡片从左到右可以念成“我爱你”和“你爱我”的概率是( )
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{4}$ |
19.通过随机询问某校110名高中生在购买食物时是否看营养说明,得如下列联表:
(1)从这50名女生中按是否看营养说明分层抽样,抽取一个容量为5的样本,问样本中看与不看营养说明的女生各有多少名?
(2)根据以上列联表,问能否在犯错误的概率不超过0.010的前提下认为“性别与在购物时看营养说明有关系”${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,参考数据:
男 | 女 | 总计 | |
看营养说明 | 50 | 30 | 80 |
不看营养说明 | 10 | 20 | 30 |
总计 | 60 | 50 | 110 |
(2)根据以上列联表,问能否在犯错误的概率不超过0.010的前提下认为“性别与在购物时看营养说明有关系”${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,参考数据:
p(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |