题目内容
15.已知函数y=f(x)对于任意的$x∈(-\frac{π}{2},\frac{π}{2})$满足f′(x)cosx+f(x)sinx>0(其中f′(x)是函数f(x)的导函数),则下列不等式不成立的是( )A. | $\sqrt{2}f(\frac{π}{3})<f(\frac{π}{4})$ | B. | $\sqrt{2}f(-\frac{π}{3})<f(-\frac{π}{4})$ | C. | $f(0)<\sqrt{2}f(\frac{π}{4})$ | D. | $f(0)<2f(\frac{π}{3})$ |
分析 根据条件构造函数g(x)=$\frac{f(x)}{cosx}$,求函数的导数,利用函数的单调性和导数之间的关系即可得到结论
解答 解:构造函数g(x)=$\frac{f(x)}{cosx}$,
则g′(x)=$\frac{f′(x)cosx-f(x)cos′(x)}{{cos}^{2}x}$=$\frac{1}{{cos}^{2}x}$[(f′(x)cosx+f(x)sinx],
∵对任意的x∈(-$\frac{π}{2}$,$\frac{π}{2}$)满足f′(x)cosx+f(x)sinx>0,
∴g′(x)>0,即函数g(x)在x∈(-$\frac{π}{2}$,$\frac{π}{2}$)单调递增,
则②g(-$\frac{π}{3}$)<g(-$\frac{π}{4}$),即$\frac{f(-\frac{π}{3})}{cos(-\frac{π}{3})}$<$\frac{f(-\frac{π}{4})}{cos(-\frac{π}{4})}$,
∴$\frac{f(-\frac{π}{3})}{\frac{1}{2}}$<$\frac{f(-\frac{π}{4})}{\frac{\sqrt{2}}{2}}$,即 $\sqrt{2}$f(-$\frac{π}{3}$))<f(-$\frac{π}{4}$),故B正确;
③g(0)<g($\frac{π}{4}$),即$\frac{f(0)}{cos0}$<$\frac{f(\frac{π}{4})}{cos\frac{π}{4}}$,
∴f(0)<$\sqrt{2}$f($\frac{π}{4}$),故③正确;
④g(0)<g($\frac{π}{3}$),即 $\frac{f(0)}{cos0}$<$\frac{f(\frac{π}{3})}{cos\frac{π}{3}}$,
∴f(0)<2f($\frac{π}{3}$),故④正确;
由排除法,
故选:A
点评 本题主要考查函数单调性的应用,利用条件构造函数是解决本题的关键,综合性较强,有一点的难度.
A. | $\frac{4}{9}$ | B. | $\frac{1}{9}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{3}$ |
A. | 在区间(-2,1)内f(x)是增函数 | B. | 在(1,3)内f(x)是减函数 | ||
C. | 在(4,5)内f(x)是增函数 | D. | 在x=2时f(x)取到极小值 |
A. | a>3 | B. | a≥3 | C. | a<3 | D. | a≤3 |
t(时) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(米) | 1.41 | 0.88 | 0.39 | 0.91 | 1.38 | 0.90 | 0.42 | 0.89 | 1.40 |
(1)根据以上数据(对浪高采用精确到0.1的数据),求出函数y=Acos(ωt)+b的最小正周期T,振幅A及函数表达式;
(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8:00时至晚上20:00时之间,有多少时间可供冲浪者进行运动?
(参考数据cos$\frac{7π}{16}$≈0.2).