题目内容

3.若数列{an}满足a1a2a3…an=n2+3n+2,在数列{an}的通项公式为an=$\left\{\begin{array}{l}{6,n=1}\\{\frac{n+2}{n},n≥2}\end{array}\right.$.

分析 a1a2a3…an=n2+3n+2,当n≥2时,a1a2a3…an-1=n2+n,即可得出.

解答 解:∵a1a2a3…an=n2+3n+2,
∴当n≥2时,a1a2a3…an-1=(n-1)2+3(n-1)+2=n2+n,
∴an=$\frac{{n}^{2}+3n+2}{{n}^{2}+n}$=$\frac{n+2}{n}$.
当n=1时,a1=6.
∴an=$\left\{\begin{array}{l}{6,n=1}\\{\frac{n+2}{n},n≥2}\end{array}\right.$.
故答案为:an=$\left\{\begin{array}{l}{6,n=1}\\{\frac{n+2}{n},n≥2}\end{array}\right.$.

点评 本题查克拉递推式的应用、数列的通项公式,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网