题目内容
【题目】已知函数是上的偶函数.
(1)求实数的值;
(2)判断并证明函数在上单调性;
(3)求函数在上的最大值与最小值.
【答案】(1);(2)详见解析;(3)最大值为1,最小值为.
【解析】试题分析:(1)依据偶函数的定义建立方程求出实数的值;(2)先判断其单调性,然后再运用单调性的定义及差比法进行推理和证明;(3)借助(2)中的单调性及函数的对称性进行推断和探求最大、小值。
试题解析:
(1)若函数是上的偶函数,则,
即,对任意实数恒成立,解得.
(2)由(1)得:,
函数在上为增函数,下证明:
设任意且,即
则
∵且,
∴,即,
于是函数在上为增函数.
(3)由(2)知,函数在上为增函数,
又是偶函数,则在上为减函数,
又,,,
所以的最大值为1,最小值为.
练习册系列答案
相关题目