ÌâÄ¿ÄÚÈÝ
13£®Èçͼ£ºÔڱ߳¤Îª6Ã׵ĵȱߡ÷ABC¸Ö°åÄÚ£¬×÷Ò»¸ö¡÷DEF£¬Ê¹µÃ¡÷DEFµÄÈý±ßµ½¡÷ABCËù¶ÔÓ¦µÄÈý±ßÖ®¼äµÄ¾àÀë¾ùx£¨0£¼x£¼$\frac{2}{3}$$\sqrt{3}$£©Ã×£¬¹ýµãD·Ö±ðÏòAB£¬AC±ß×÷´¹Ïߣ¬´¹×ãÒÀ´ÎΪG£¬H£»¹ýµãE·Ö±ðÏòAB£¬BC±ß×÷´¹Ïߣ¬´¹×ãÒÀ´ÎΪM£¬N£»¹ýµãF·Ö±ðÏòBC£¬AC±ß×÷´¹Ïߣ¬´¹×ãÒÀ´ÎΪR£¬S£®½Ó×ÅÔÚ¡÷ABCµÄÈý¸öÄڽǴ¦£¬·Ö±ðÑØDG£¬DH¡¢EM£¬EN¡¢FR£¬FS½øÐÐÇи¸îÈ¥µÄÈý¸öÈ«µÈµÄСËıßÐηֱðΪAGDH¡¢BMEN¡¢CRFS£®È»ºó°Ñ¾ØÐÎGDEM¡¢NEFR¡¢SFDH·Ö±ðÑØDE¡¢EF¡¢FDÏòÉÏ´¹Ö±·ÕÛ£¬²¢¶Ô·ÕÛºóµÄ¸Ö°å½øÐÐÎ޷캸½Ó£¨×¢£ºÇиîºÍÎ޷캸½Ó¹ý³ÌÖеÄËðºÄºÍ·ÑÓúöÂÔ²»¼Æ£©£¬´Ó¶ø¹¹³ÉÒ»¸öÎ޸ǵÄÕýÈýÀâÖùÐîË®³Ø£®£¨1£©Èô´ËÎ޸ǵÄÕýÈýÀâÖùÐîË®³ØµÄ²àÃæºÍµ×ÃæÔì¼Û¾ùΪa£¨a£¾0£©ÍòÔª/Ã×2£¬Çó´ËÎ޸ǵÄÕýÈýÀâÖùÐîË®³Ø×ÜÔì¼ÛµÄ×îСֵ£»
£¨2£©Èô´ËÎ޸ǵÄÕýÈýÀâÖùÐîË®³ØµÄÌå»ýΪVÃ×3£¬ÇóÌå»ýVµÄ×î´óÖµ£®
·ÖÎö £¨1£©Á¬½ÓBE£¬Çó³öEN£¬Éè´ËÎ޸dz¤·½ÌåÐîË®³ØµÄ×ÜÔì¼ÛΪy£¨ÍòÔª£©£¬Ð´³öyµÄ±í´ïʽ£¬È»ºóÇó½â×îСֵ£®£¨2£©Ð´³öÎ޸dz¤·½ÌåÐîË®³ØµÄÌå»ý£¬ÀûÓù«Ê½µÄµ¼Êý£¬ÅжϺ¯ÊýµÄµ¥µ÷ÐÔÇó½â×îÖµ¼´¿É£®
½â´ð £¨±¾Ð¡ÌâÂú·Ö16·Ö£©
½â£º£¨1£©Á¬½ÓBE£¬ÓÉÌâÒâ¿ÉÖª£¬ÔÚRT¡÷BENÖУ¬
¡ßEN=x£¨Ã×£©£¬¡ÏEBN=30¡ã
¡à$tan{30^0}=\frac{EN}{BN}$£¬¼´$BN=\sqrt{3}x£¨Ã×£©$£¬¡£¨2·Ö£©
¼´Õý¡÷DEFµÄ±ß³¤Îª$6-2\sqrt{3}x£¨Ã×£©$£¬¡£¨3·Ö£©
ÈôÉè´ËÎ޸dz¤·½ÌåÐîË®³ØµÄ×ÜÔì¼ÛΪy£¨ÍòÔª£©£¬
Ôò$y=[\frac{{\sqrt{3}}}{4}{£¨6-2\sqrt{3}x£©^2}+3£¨6-2\sqrt{3}x£©•x]•a$£¨$0£¼x¡Ü\frac{{2\sqrt{3}}}{3}$£©¡£¨5·Ö£©
=[$-3\sqrt{3}{x^2}+9\sqrt{3}$]•a
µ±$x=\frac{{2\sqrt{3}}}{3}£¨m£©$ʱ£¬${y_{min}}=5\sqrt{3}a$£¨ÍòÔª£©
¼´´ËÎ޸dz¤·½ÌåÐîË®³Ø×ÜÔì¼ÛµÄ×îСֵΪ$5\sqrt{3}a$£¨ÍòÔª£©¡£¨8·Ö£©
£¨2£©ÓÉÌâÒâ¿ÉÖª£¬´ËÎ޸dz¤·½ÌåÐîË®³ØµÄÌå»ýΪ£º
$V=\frac{{\sqrt{3}}}{4}{£¨{6-2\sqrt{3}x}£©^2}•x=\sqrt{3}£¨{3{x^3}-6\sqrt{3}{x^2}+9x}£©$£¨$0£¼x¡Ü\frac{{2\sqrt{3}}}{3}$£©£¬¡£¨10·Ö£©
ÔòV'=$\sqrt{3}£¨{9{x^2}-12\sqrt{3}x+9}£©=3\sqrt{3}£¨{\sqrt{3}x-3}£©£¨{\sqrt{3}x-1}£©$£¬
ÁîV'=0£¬²¢½âÖ®µÃ$x=\frac{{\sqrt{3}}}{3}£¬x=\sqrt{3}∉£¨{0£¬\frac{{2\sqrt{3}}}{3}}]$£¬¡£¨12·Ö£©
µ±$x¡Ê£¨{0£¬\frac{{\sqrt{3}}}{3}}]$ʱ£¬V'£¾0£¬¼´º¯ÊýV£¨x£©ÔÚ$x¡Ê£¨{0£¬\frac{{\sqrt{3}}}{3}}]$Ϊµ¥µ÷µÝÔöº¯Êý£¬
µ±$x¡Ê[{\frac{{\sqrt{3}}}{3}£¬\frac{{2\sqrt{3}}}{3}}]$ʱ£¬V'£¼0£¬¼´º¯ÊýV£¨x£©ÔÚ$x¡Ê[{\frac{{\sqrt{3}}}{3}£¬\frac{{2\sqrt{3}}}{3}}]$Ϊµ¥µ÷µÝ¼õº¯Êý£¬
Ôòµ±$x=\frac{{\sqrt{3}}}{3}£¨Ã×£©$ʱ£¬${V_{max}}=4£¨{Ã×^3}£©$£¬¡£¨15·Ö£©
¼´´ËÎ޸dz¤·½ÌåÐîË®³ØµÄÌå»ýVµÄ×î´óֵΪ4£¨m3£©£® ¡£¨16·Ö£©
µãÆÀ ±¾Ì⿼²éº¯ÊýÓë·½³ÌµÄÓ¦Ó㬺¯ÊýµÄ×îÖµ£¬º¯ÊýµÄµ¼ÊýÓ뺯ÊýµÄµ¥µ÷ÐÔµÄÓ¦Ó㬿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£®
Ô˶¯Ê±¼ä £¨µ¥Î»£ºÐ¡Ê±£© | $[0£¬\frac{1}{6}£©$ | $[\frac{1}{6}£¬\frac{1}{3}£©$ | $[\frac{1}{3}£¬\frac{1}{2}£©$ | $[\frac{1}{2}£¬\frac{2}{3}£©$ | $[\frac{2}{3}£¬\frac{5}{6}£©$ | $[\frac{5}{6}£¬1£©$ |
×ÜÈËÊý | 10 | 18 | 22 | 25 | 20 | 5 |
£¨1£©¸ù¾ÝÒÑÖªÌõ¼þÍê³ÉÏÂÃæµÄ2¡Á2ÁÐÁª±í£º
¿ÎÍâÌåÓý²»´ï±ê | ¿ÎÍâÌåÓý´ï±ê | ºÏ¼Æ | |
ÄÐ | |||
Å® | 10 | 55 | |
ºÏ¼Æ |
¸½£º${¦¶^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d£®
²Î¿¼Êý¾Ý | µ±¦¶2¡Ü2.706ʱ£¬ÎÞ³ä·ÖÖ¤¾ÝÅж¨±äÁ¿A£¬BÓйØÁª£¬¿ÉÒÔÈÏΪÁ½±äÁ¿ÎÞ¹ØÁª£» |
µ±¦¶2£¾2.706ʱ£¬ÓÐ90%µÄ°ÑÎÕÅж¨±äÁ¿A£¬BÓйØÁª£» | |
µ±¦¶2£¾3.841ʱ£¬ÓÐ95%µÄ°ÑÎÕÅж¨±äÁ¿A£¬BÓйØÁª£» | |
µ±¦¶2£¾6.635ʱ£¬ÓÐ99%µÄ°ÑÎÕÅж¨±äÁ¿A£¬BÓйØÁª£® |
A£® | $\frac{¦Ð}{6}$ | B£® | $\frac{¦Ð}{12}$ | C£® | $\frac{1}{3}$ | D£® | $\frac{1}{2}$ |
¦Î | 0 | 1 | 2 | 3 | 4 |
p | $\frac{1}{120}$ | x | y | z | $\frac{1}{5}$ |
£¨2£©Çóm£¬nµÄÖµ£»
£¨3£©ÇóÊýѧÆÚÍûE¦Î£®
A£® | $\frac{1}{6}$ | B£® | $\frac{1}{5}$ | C£® | $\frac{4}{5}$ | D£® | $\frac{5}{6}$ |
A£® | 3 | B£® | $\frac{1}{3}$ | C£® | -3 | D£® | $-\frac{1}{3}$ |