题目内容
4.一只蚂蚁在三边长分别为3、4、5的三角形面上自由爬行,某时刻该蚂蚁距离三角形的三个顶点的距离不超过1的概率为( )A. | $\frac{π}{6}$ | B. | $\frac{π}{12}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
分析 本题考查的知识点是几何概型的意义,关键是要找出蚂蚁距离三角形的三个顶点的距离不超过1区域面积,利用面积比求概率.
解答 解:由已知得到三角形为直角三角形,三角形ABC的面积为$\frac{1}{2}$×3×4=6,
离三个顶点距离都不大于1的地方如图三角形的阴影部分,它的面积为半径为1的半圆面积S=$\frac{1}{2}$π×12=$\frac{π}{2}$,
所以其恰在离三个顶点距离不超过1的概率为:$\frac{\frac{π}{2}}{6}=\frac{π}{12}$;
故选B
点评 本题考查几何概型概率公式、三角形的面积公式、扇形的面积公式;关键是找出事件的测度是符合条件的面积.
练习册系列答案
相关题目
14.班主任为了对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.随机抽出8位,他们的数学分数从小到大排序是:60、65、70、75、80、85、90、95,物理分数从小到大排序是:72、77、80、84、88、90、93、95.
(Ⅰ)如果按性别比例分层抽样,男女同学分别抽取多少人?
(Ⅱ)若这8位同学的数学、物理分数对应如下表:
根据上表数据用变量y与x的相关系数或散点图说明物理成绩y与数学成绩x之间是否具有线性相关性?如果具有线性相关性,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关性,请说明理由.
参考公式:相关系数$r=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sqrt{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}\sqrt{\sum_i^n{({y_i}-\overline y}}{)^2}}}$;回归直线的方程是:$\widehat{y}$=bx+a.
其中对应的回归估计值b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$;
参考数据:$\overline{x}$=77.5,$\overline{y}$=85,$\sum_{i=1}^{8}$(x1-$\overline{x}$)2≈1050,$\sum_{i=1}^{8}$(y1-$\overline{y}$)2≈456;$\sum_{i=1}^{8}$(x1-$\overline{x}$)(y1-$\overline{y}$)≈688,$\sqrt{1050}$≈32.4,$\sqrt{456}$≈21.4,$\sqrt{550}$≈23.5.
(Ⅰ)如果按性别比例分层抽样,男女同学分别抽取多少人?
(Ⅱ)若这8位同学的数学、物理分数对应如下表:
学生编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
数学分数x | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
物理分数y | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
参考公式:相关系数$r=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sqrt{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}\sqrt{\sum_i^n{({y_i}-\overline y}}{)^2}}}$;回归直线的方程是:$\widehat{y}$=bx+a.
其中对应的回归估计值b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$;
参考数据:$\overline{x}$=77.5,$\overline{y}$=85,$\sum_{i=1}^{8}$(x1-$\overline{x}$)2≈1050,$\sum_{i=1}^{8}$(y1-$\overline{y}$)2≈456;$\sum_{i=1}^{8}$(x1-$\overline{x}$)(y1-$\overline{y}$)≈688,$\sqrt{1050}$≈32.4,$\sqrt{456}$≈21.4,$\sqrt{550}$≈23.5.
15.已知1,2,3,4,x1,x2,x3的平均数是8,那么x1+x2+x3的值是( )
A. | 14 | B. | 22 | C. | 32 | D. | 46 |
12.已知等腰△OAB中|OA|=|OB|=2,且$|{\overrightarrow{{O}{A}}+\overrightarrow{{O}{B}}}|≥\frac{{\sqrt{3}}}{3}|{\overrightarrow{{A}{B}}}|$,那么$\overrightarrow{{O}{A}}•\overrightarrow{{O}{B}}$的取值范围是:( )
A. | [-2,4) | B. | (-2,4) | C. | (-4,2) | D. | (-4,2] |
19.计算sin(-240°)的值为( )
A. | $\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |